Chapter 8: The variational principle

This is a common occurrence: Suppose you have a
Hamiltonian that (i) cannot be solved exactly and (ii) where
perturbation theory cannot be applied because there is ho
simple H, and/or because there is no small H.

Then, what do we do? ®

One possibility is to use the variational principle: it does
not give you the exact answer but gives you an upper
bound to the energy, which is often sufficient.

Select any wave function
you wish. Call it ¥. The
claim is that always:

Eq < (VIH|Y) = (H)




Although we do not know explicitly the eigenstates
of H, because we cannot solve the problem
exactly, we know they exist.

H‘[fn = En ‘lfn

Then, in an "abstract” manner we can expand our
proposed variational wave function in the complete basis

of eigenstates:
Y= ch Yn
n

If ¥ is normalized, then:

1= (¥|y) <Z Cm V¥
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Repeating with the full H included, we find:

(H) = <Z Cm¥rm|H Zﬂ'n ‘:bn> — Z ZC:,ENC'H(‘.”;"W[:O = Z E11|C11|2
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But the ground state has the lowest energy by definition:
Egs < E, . Then:

(H) = Egs Z |C'n|2 = Egs
n

The variational principle is powerful, easy to use, and
accurate if you have a good intuition on how the wave
function should look like. But there is a problem: you do
NOT know how close your result is compared to the exact
result. You only know you are above.



Example 8.1:

Consider the 1D Harmonic Oscillator with Hamiltonian:

. h? d? +1 S 5
= — —Mw X
Qndxi 2

Here we know the answer exactly, but we pretend we do not.

As a "trial” wave function we will use a Gaussian
exponential. Using Gaussians is very common,
because the integrals are easy to do.

w(.\') — Ae—b.\'z

A is the normalization and b is called a "variational
parameter” that we will optimize by minimizing the energy.



Normalization: ‘ v (x )‘ * means do the integrall

2] 1/4
1 = Al [ _7’” dx = |A| I/ = A= (_.f)

Next, we need the expectation (HY = (T) + (V)
value of the Hamiltonian:

For the kinetic energy:

Ty= -1 ap [ e T (o) o KO

2m o dx= 2m

For the potential eneray:

(V) = -—ma) |A|[ p2b17 ch*'"w
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Note in back of the book
the gaussian integrals
are from 0 to «




h?l >
Adding kinetic and potential energy: (H) = 2_? + n;c;))
m

Let us now “optimize” the “variational parameter”

d (H) h? me? 0 = o
— = — — — \ h —
db 2m  8bh? opt 2K

If we infroduce the "optimal b" into <H>, we obtain:

1
(H>min = ;hw
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which is the exact result, by chance, in this simple
example. In the vast majority of cases, you will not
find the exact result.



Example 8.2:

Consider now the attractive delta function. Here we

also know the exact result from P411: Eo = —ma*/2h*
b h2 d* 501
= — —QolX
2m dx?

Here we will use again the Gaussian trial wave function.
We know already that this is not the exact ground state.
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The normalization is o 5\ 174
independent of the | — |A|2/ o~ gy — |A|2‘/Z = A= (_.]i)
Hamiltonian, thus 0 2b T
same as Example 8.1:
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<T> is the same as well: = 2m IAI f gbv’



The only difference between Examples 8.1 and 8.2 arises from <V5:

>0 2 2b
(V) = —a|A|2f e P S() dy = —a\ [ —
e T
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Adding kinetic and potential: (H) = — —a,/ —
2m /g
. / hi? o 2ma?
Optimizing b: Sy =" _ — 0 h —
B =0 T B ) T A
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we arrive to (H)min = —-——}-7 while exact is Egs = —n'za2/2h2
mh*

Not perfect but close enough i.e. & instead of 2!

Note: If variational state is known to be orthogonal to ground
state (e.g. even vs odd functions), then the upper bound found is
for the first excited state.



. As wave function you can use anything,
Example 8.3: including a function with discontinuous first
derivatives:

Consider as potential the infinite

square well between 0 and a. v A
Ax, if0<x<a/2,
v(x)=3 Ala —x). ifa/2 <x <ua.
0. otherwise, -+ ) >

Note that this variational wave function has no
parameters to optimize. Only A to normalize.

a/?. a 3 2 3
1= A ,:[ x*dx -!—/ ( —X)‘?'d.\':, = |A|2£I~ = A==/%
JO a/? 12 aV a

The challenge is how to handle <T> that
contains a second derivativel!
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dwidx A

m A. if 0 <x <a/2, A
.;-.= —A, ifﬂ/2<x < d,
dx 0, otherwise, a2 2

x )

The derivative of a step function
is a Dirac delta. Number in front

is the jump:
d>yr
o2 = Ad(x) — 2Aé(x —a/2) + Ad(x —a)
_hA
(H) = ™ [6(x) —26(x —a/2) +§(x —a)]¥(x)dx
_ h?A h*A%a | 12h°

" [V (0) — 2¥(a/2) + ¥ ()] =

2m 2ma?

The exact result is:
Variational theorem

2s2
Eg = n°h*[2ma* holds because 12 > 72
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