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Chapter 8: The variational principle

This is a common occurrence: Suppose you have a 
Hamiltonian that (i) cannot be solved exactly and (ii) where 
perturbation theory cannot be applied because there is no 
simple H0 and/or because there is no small H’. 

Then, what do we do? 

One possibility is to use the variational principle: it does 
not give you the exact answer but gives you an upper 
bound to the energy, which is often sufficient. 

Select any wave function 
you wish. Call it Y. The 
claim is that always: 
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Although we do not know explicitly the eigenstates 
of H, because we cannot solve the problem 
exactly, we know they exist. 

Then, in an “abstract” manner we can expand our 
proposed variational wave function in the complete basis 
of eigenstates: 

If Y is normalized, then: 
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Repeating with the full H included, we find: 

But the ground state has the lowest energy by definition: 

. Then: 

The variational principle is powerful, easy to use, and 
accurate if you have a good intuition on how the wave 
function should look like.  But there is a problem: you do 
NOT know how close your result is compared to the exact 
result. You only know you are above. 
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Example 8.1:

Consider the 1D Harmonic Oscillator with Hamiltonian: 

Here we know the answer exactly, but we pretend we do not. 

As a “trial” wave function we will use a Gaussian 
exponential. Using Gaussians is very common, 
because the integrals are easy to do. 

A is the normalization and b is called a “variational 
parameter” that we will optimize by minimizing the energy. 
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Normalization: 

Next, we need the expectation 
value of the Hamiltonian: 

For the kinetic energy:

For the potential energy:

2 means do the integral!
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Note in back of the book 

the gaussian integrals 

are from 0 to ∞
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If we introduce the “optimal b” into <H>, we obtain: 

Let us now “optimize” the “variational parameter” 

which is the exact result, by chance, in this simple 
example. In the vast majority of cases, you will not 
find the exact result. 

Adding kinetic and potential energy: 

opt
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Example 8.2:

Consider now the attractive delta function. Here we 
also know the exact result from P411: 

Here we will use again the Gaussian trial wave function. 
We know already that this is not the exact ground state.  

The normalization is 
independent of the 
Hamiltonian, thus 
same as Example 8.1:

<T> is the same as well:
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The only difference between Examples 8.1 and 8.2 arises from <V>:

Adding kinetic and potential:

Optimizing b:

we arrive to                               while exact is

Not perfect but close enough i.e. p instead of 2!

Note: If variational state is known to be orthogonal to ground 
state (e.g. even vs odd functions), then the upper bound found is 
for the first excited state.

opt
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Example 8.3:
As wave function you can use anything, 
including a function with discontinuous first 
derivatives:

Consider as potential the infinite 
square well between 0 and a.

The challenge is how to handle <T> that 
contains a second derivative!

Note that this variational wave function has no 
parameters to optimize. Only A to normalize.
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The derivative of a step function 
is a Dirac delta. Number in front 
is the jump:

The exact result is:
Variational theorem 
holds because


