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How do we find ca(t) and cb(t)? Requiring that the time 
DEPENDENT Sch. Eq. be satisfied.

Recalling
we simply plug this state into the Sch. Eq. above:

Time dependent 
coefficients.

Perturbation is time dependent. 
It may be ~ sin(wt) for example.

Time-independent Hamiltonian 
like usual hydrogen atom.

The dot means 
dca(t)/dt or 
dcb(t)/dt .
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Rewriting the formula we can notice some cancellations.

Then, the long original equation simplifies to:

As often done, we will now 
exploit the orthogonality
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Consider the inner product with <ya|  
and then the inner product with <yb| :  

Then, we obtain two equations:

Reorder and use the 
following compact notation:

Note sign 
difference.
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This system of two coupled equations for the coefficients ca(t) 
and cb(t) is totally equivalent to solving the time dependent 
Sch. Eq. for a two states system, even if H’ is not small. If you 
wish to include more states, then more equations are 
generated, as many as coefficients i.e. as many as states.

Then, in practice often the system of 
equations simplifies further to:

where                           with 

b 

a 

Moreover, as you will see, often the diagonal matrix elements H’aa
and H’bb are 0. E.g. an electric field arises from a potential that is 
“odd”:                          . “Diagonal” matrix elements will cancel.
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For “b”, we find a nontrivial result: 

To obtain something nontrivial for the “a” 
state, we need another iteration in H’:

We could continue the process, but this is sufficient. Please read 
in book pages 406-407 the discussion about the normalization and 
the apparent problem that the normalization to 1 is not respected. 
But it is respected at the order of H’ you are keeping. 
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11.1.3: Sinusoidal Perturbation

Consider, very common, perturbations 
where the space and time component 
are separated in factors:

Then, in this case, at order 1, we find exactly for the b coefficient:

Another simplification. Work near resonance and drop the first term.
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The transition probability for the transition from “a” to “b” is a 
sinusoidal function of time that can be large near resonance, even 
with a small perturbation Vba.

Note: sin(x)/(x) → 1 when x→0, so w→ w0 is not a divergence.
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The amplitude, meaning how likely is the transition from “a” to “b”, 
is regulated by both the perturbation strength hidden in Vba and 
also by how close to resonance we are. If the amplitude exceeds 1, 
then the formula is too crude and needs to be improved …

Moreover, the probability is sinusoidal. The particle can absorb 
energy and go up, or release energy and come down. 

At times                                     where n=1,2,3, … the electron is back 
in the lower state “a” with 100% chance.  Thus, often it is better to 
turn off the external field, after a time sufficient to excite the 
electron, if you wish to keep the electron in the upper state. 
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Plotting results at a fixed time, as a function of frequency, make 
more clear that near resonance the probability is maximized.

Near resonance,                                     ~ [                            ]2

At resonance, amplitude grows like t2 so 
eventually the transition will surely occur. 


