In writing the Sch Eq we assumed that the spins may be coupled among themselves and/or with a uniform magnetic field, but the spins do not depend on position.

Because electrons are fermions, the entire wave function must be antisymmetric.
5.2.1 Helium $(Z=2)$

$$
H=\left\{-\frac{\hbar^{2}}{2 m} \nabla_{1}^{2}-\frac{1}{4 \pi \epsilon_{0}} \frac{2 e^{2}}{r_{1}}\right\}+\left\{-\frac{\hbar^{2}}{2 m} \nabla_{2}^{2}-\frac{1}{4 \pi \epsilon_{0}} \frac{2 e^{2}}{r_{2}}\right\}+\frac{1}{4 \pi \epsilon_{0}} \frac{e^{2}}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|}
$$

First neglect the e-e repulsion (on page 322, Ch 8 , we will improve on this)

The space-like portion of the wave function in general will be (before symmetrization):

$$
\begin{aligned}
\psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) & =\psi n b m\left(\mathbf{r}_{1}\right) \psi_{n^{\prime} l m^{\prime}}\left(\mathbf{r}_{2}\right) \\
E & =4\left(E_{n}^{H}+E_{n^{\prime}}^{H}\right)
\end{aligned}
$$

For ground state, we place both $\begin{gathered}1 e \text { in } \mathrm{He} \\ E_{n}=-\left[\frac{m}{2 \hbar^{2}}\left(\frac{2 e^{2}}{4 \pi \epsilon_{0}}\right)^{2}\right] \frac{1}{n^{2}} \\ \text { electrons at } n=1, ~ l=0, m=0\end{gathered}$ electrons at $n=1,1=0, m=0$.

$$
\left.\begin{array}{l}
\text { 1e in } \mathrm{He} \\
E_{n}=-
\end{array} \frac{m}{2 \hbar^{2}}\left(\frac{2 e^{2}}{4 \pi \epsilon_{0}}\right)^{2}\right] \frac{1}{n^{2}}
$$

$$
\psi_{0}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\psi_{i 00}\left(\mathbf{r}_{1}\right) \psi_{100}\left(\mathbf{r}_{2}\right)=\frac{8}{\pi a^{3}} e^{-2\left(r_{1}+r_{2}\right) / a}
$$

\[

\]

Rapidly with increasing Z, big energies are induced! -109 eV vs -13.6 eV with $\mathrm{Z}=2$

Borh radius reduced by factor 2;

$$
\mathrm{Z}=1
$$ in general a factor $Z$.

## Some consequences of $A S$ vs $S$ :

Because the full wave function has a "space portion" and a "spin portion", the first excited states of He have two possibilities

$$
\Psi_{2 e}=\psi_{S}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right) \chi_{A S}\left(\boldsymbol{S}_{1}, \boldsymbol{S}_{2}\right)
$$

$$
\Psi_{2 e}=\psi_{A S}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right) \chi_{S}\left(\boldsymbol{S}_{1}, \boldsymbol{S}_{2}\right) \longleftarrow \begin{aligned}
& \text { First excited } \\
& \text { is triplet } S=1
\end{aligned}
$$

then, all other things equal, the thus-far ignored e-e repulsion, that has nothing to do with spin, prefers the AS space portion because electrons are further apart than in the $S$ space portion (see page 211). Confirmed experimentally that the first excited state has spin 1.

Now repeating using the Chemistry class cartoons: The space portion is symmetric, thus the spin portion must be antisymmetric.
$\psi=\psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) \chi\left(\mathbf{s}_{1}, \mathbf{s}_{2}\right)=\frac{8}{\pi a^{3}} e^{-2\left(r_{1}+r_{2}\right) / a} \frac{1}{\sqrt{2}}\left(\uparrow_{1} \downarrow_{2}-\downarrow_{1} \uparrow_{2}\right)$

The ground state cartoon $\begin{gathered}n=3 \\ n=2 \\ n=1\end{gathered}$ version is:
$n=2$
$n=1$


Excited states?


This portion is repeated: Excited states? Two options

$$
\begin{aligned}
& =\frac{1}{\sqrt{2}}\left[\psi_{100}\left(\boldsymbol{r}_{1}\right) \psi_{200}\left(\boldsymbol{r}_{2}\right)+\psi_{200}\left(\boldsymbol{r}_{1}\right) \psi_{100}\left(\boldsymbol{r}_{2}\right)\right] \frac{1}{\sqrt{2}}\left(\uparrow_{1} \downarrow-\downarrow \uparrow_{2}\right) \\
& =\frac{1}{\sqrt{2}}\left[\psi_{100}\left(\boldsymbol{r}_{1}\right) \psi_{200}\left(\boldsymbol{r}_{2}\right)-\psi_{200}\left(\mathbf{r}_{1}\right) \psi_{100}\left(\boldsymbol{r}_{2}\right)\right] \frac{1}{\sqrt{2}}\left(\uparrow_{1} \downarrow_{2}+\downarrow_{1} \uparrow_{2}\right)
\end{aligned}
$$

If e-e neglected, then singlet and triplet are degenerate

## If e-e is brought back, at least qualitatively, then the degeneracy is broken

Due to the effective "exchange forces", the AS space-like combination keeps the two electrons a bit further apart ... (for AS sector the exchange force is "repulsive"; for S sector is "attractive")

Then, the energy levels for two electrons is:


## Real numbers from book



## Not in book, excited states

## $Z=3$, Lithium

## 

## $Z=4$, Beryllium



## 



The excited states become complicated fast!

