$|s m\rangle$
Then, we have confirmed that indeed we form a triplet and a singlet, out of two spins $\frac{1}{2}$.
$\left\{\begin{array}{ll}|11\rangle & =\uparrow \uparrow \\ |10\rangle & =\frac{1}{\sqrt{2}}(\uparrow \downarrow+\downarrow \uparrow) \\ |1-1\rangle & =\downarrow \downarrow\end{array}\right\} \quad s=1 \quad$ triplet
$\left\{|00\rangle=\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow)\right\} \quad s=0 \quad$ singlet

Not in book (counting of states for 2 and 3 spins):

$$
\begin{array}{cc}
\uparrow \uparrow & \uparrow \uparrow \\
\uparrow \downarrow & \frac{1}{\sqrt{2}}(\uparrow \downarrow+\downarrow \uparrow) \\
\downarrow \uparrow & \downarrow \downarrow \\
\downarrow \downarrow & \frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow)
\end{array}
$$

$2^{2}=4$ states sort of random

4 states grouped as $S=1$ (3) and $\mathrm{S}=0$ (1)

Note: after finding $S=1$, there was only 1 state left, thus had to be singlet and had to be orthogonal, thus fixing the "-"
$\uparrow \uparrow \uparrow$
$\uparrow \uparrow \downarrow, \uparrow \downarrow \uparrow, \downarrow \uparrow \uparrow 2^{3}=8$ states
$\uparrow \downarrow \downarrow, \downarrow \uparrow \downarrow, \downarrow \downarrow \uparrow$ sort of random
$\downarrow \downarrow$
$\uparrow \uparrow \uparrow, S_{-} \uparrow \uparrow \uparrow, S^{2} \_\uparrow \uparrow \uparrow, S^{3} \_\uparrow \uparrow \uparrow$ 4 states form $S$ total $3 / 2$

The 4 states left form TWO $S$ total $\frac{1}{2}$ states.
$3 / 2 \bigoplus 1 / 2 \oplus \frac{1}{2}$ (more about this in a few pages)

## Not in book (and FYI only):

FYI: spins can interact among themselves, not only with external magnetic fields.

It is as if other spins " $j$ " produce an effective magnetic field on the spin "i" you are looking at. This is the famous Heisenberg model:

$$
H=J \sum_{\langle i, j\rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j}
$$

Ground state? Number of states grows like $2^{N}(=2,4,8,16, \ldots)$

Record done exactly N~ 40. $2^{40}=1,099,511,627,776$ states

Crystal structure of undoped $\mathrm{La}_{2} \mathbf{C u O}_{4}$


WITHOUT PROOF, this is what happens when you combine a spin $s_{1}$ and a spin $s_{2}$ (each individually $0,1 / 2,1,3 / 2, \ldots$ ).

The total spin $s$ of the combination can be Eq.(4.182):

$$
s=\left(s_{1}+s_{2}\right),\left(s_{1}+s_{2}-1\right),\left(s_{1}+s_{2}-2\right), \ldots,\left|s_{1}-s_{2}\right|
$$

Example 1: for $s_{1}=1 / 2$ and $s_{2}=1 / 2$, then $s$ runs from $s_{1}+s_{2}=1$ to $\left|s_{1}-s_{2}\right|=0$, with nothing in between. We already confirmed this is true.

Example 2: for $s_{1}=3 / 2$ and $s_{2}=2$, then $s$ runs from $s_{1}+s_{2}=7 / 2$ to $\left|s_{1}-s_{2}\right|=1 / 2$, with $5 / 2$ and $3 / 2$ in between.

Example 3: this unproven theorem holds also for the addition of orbital angular momentum / and spin s. For $1=2$ and $s=1 / 2$, then total $j$ runs from for $1+s=5 / 2$ to $||-s|=3 / 2$, with nothing in between.

Example 4: if you have three particles with $s_{1}=1 / 2, s_{2}=1 / 2$, and $s_{3}=1 / 2$, then first you add two, such as $s_{1}$ and $s_{2}$, finding $s_{\text {partial }}=1,0$ and then add $s_{\text {partial }}$ with $s_{3}$ finding $3 / 2,1 / 2$ (for $s_{\text {partial }}=1$ ) and another $1 / 2$ (for $s_{\text {partial }}=0$ ). So there are two independent combinations with total spin $\frac{1}{2}$. We already saw that in previous pages: $3 / 2 \oplus 1 / 2 \oplus 1 / 2$

We will NOT deal with the Clebsch-Gordan coefficients, but with the foundation given already, it should be easy for you to learn from the book.

## Detour: Explanation of video about "spin"



## Chapter 5: Identical Particles

For one particle, like one electron in the H atom, we simply need the wave function $\Psi\left(r_{1}, t\right)$ where $r_{1}$ is the coordinate of electron " 1 ".

Consider now two particles as warm up.
For two particles, e.g. two electrons in the He atom, in QM we need the wave function $\Psi\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, t\right)$ where $\boldsymbol{r}_{1}$ and $\boldsymbol{r}_{2}$ are the coordinates of the two electrons.


Mathematically, the Sch. Eq. $i \hbar \frac{\partial \Psi}{\partial t}=H \Psi$ has a more complicated Hamiltonian.

$$
H=-\frac{\hbar^{2}}{2 m_{1}} \nabla_{1}^{2}-\frac{\hbar^{2}}{2 m_{2}} \nabla_{2}^{2}+V\left(\mathbf{r}_{1,}, \mathbf{r}_{2}, t\right)
$$

The potential $V$ typically has terms like e-p attraction, but also e-e repulsion.

Example, for the He atom:

$$
\begin{aligned}
& H=\left\{-\frac{\hbar^{2}}{2 m} \nabla_{1}^{2}-\frac{1}{4 \pi \epsilon_{0}} \frac{2 e^{2}}{r_{1}}\right\}+\left\{-\frac{\hbar^{2}}{2 m} \nabla_{2}^{2}-\frac{1}{4 \pi e_{0} \text { attraction }} \frac{2 e^{2}}{r_{2}}\right\}+\underset{p-e_{2} \text { attraction }}{\frac{1}{4 \pi \epsilon_{0}} \frac{e^{2}}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|}} \\
& \begin{array}{lll}
\text { is } V\left(r_{1}\right) & \text { is } V\left(r_{2}\right) & \text { is } V\left(r_{1}, r_{2}\right)
\end{array}
\end{aligned}
$$

