Test 1: common errors.

$$
\left(\begin{array}{ll}
1 & -i \\
i & -1
\end{array}\right) \rightarrow\left|\begin{array}{cc}
1-\lambda & -i \\
i & -1-\lambda
\end{array}\right|=0
$$

Some of you dropped the diagonal i.e.

Probabilities must be real numbers between 0 and 1. If you find $P=0.5 i$ or $P=-2$, they are wrong.

Probability of $+\frac{h}{2}$ song x is not $|a|^{2}$ if $X=\binom{a}{b}$

3 particle whee $l=1 \quad$ At $\uparrow+7$

Most of you simply said $L=0,1,2,3$

5.3 Solids

When atoms are brought together, the wave functions start overlapping.

When that happens, energy levels split by small amounts, keeping the total number of levels constant.

Example: 3 levels

6 levels

3N levels
"bands" are formed

Reminder from Ch 2, 2020: In the delta function potential the (only) bound state and its energy is:

$$
\psi(x)=\frac{\sqrt{m \alpha}}{\hbar} e^{-m \alpha|x| / \hbar^{2}} ; \quad E=-\frac{m \alpha^{2}}{2 \hbar^{2}} .
$$

NOTE (not in book):
Generalization to two deltas will have two solutions (even and odd) with slightly different energies.

The inner electrons, like those in (1s), remain trapped near its original nucleus. But the outer electrons, with more extended wave functions, can move from atom to atom.

Depending on how the bands are formed, and how many electrons you have, you may have a metal or insulator.

We will consider two crude approximations:
(a) Non-interacting electrons in a giant box (such as a cubic well)
(b) Non-interacting electrons in a periodic potential produced by nuclei.

5.3.1 The Free Electron Gas

Considering the enormity of the problem, we need to start making crude approximations and see how they work, and refine accordingly.

We will first assume that the "conduction electrons" -those that can jump from atom to atom -- are totally free inside a giant box (i.e. a 3D well) the size of the crystal.

$V(x, y, z)= \begin{cases}0, & \text { if } 0<x<l_{x}, \quad 0<y<l_{y}, \text { and } 0<z<l_{z} \\ \infty, & \text { otherwise. }\end{cases}$

This is the plan within this very crude approximation:
(1) We will solve the Sch Eq for ONE PARTICLE, i.e. a particle in a big box. Very easy! It was already done in a HW problem in P411.

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi=E \psi
$$

(2) After solving this problem, we will simply start filling levels with 2 electrons per state (1 up, 1 down), until we have the (large) number of electrons we want. The e-e repulsion will be neglected.
(3) Conceptually, it is the analog of using the exact solution of the H atom, but for a much heavier element like Cu (29) or Au (79). Not a bad approximation. But here we go all the way to cover the whole crystal.

So let us recall fast the steps to solve the "cubic well":
(a) Use "separation of variables": $\psi(x, y, z)=X(x) Y(y) Z(z)$, plug into Sch Eq, divide by $X Y Z$, and realize the equation is written as 3 independent pieces.

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 m} \frac{d^{2} X}{d x^{2}}=E_{x} X ; \quad-\frac{\hbar^{2}}{2 m} \frac{d^{2} Y}{d y^{2}}=E_{y} Y ; \quad-\frac{\hbar^{2}}{2 m} \frac{d^{2} Z}{d z^{2}}=E_{z} Z \\
E=E_{x}+E_{y}+E_{z}
\end{gathered}
$$

(b) Introduce standard " k " notation, but now 3 of them:

$$
k_{x} \equiv \frac{\sqrt{2 m E_{x}}}{\hbar}, \quad k_{y} \equiv \frac{\sqrt{2 m E_{y}}}{\hbar}, \quad k_{z} \equiv \frac{\sqrt{2 m E_{z}}}{\hbar}
$$

(c) Solutions are:

$$
\begin{aligned}
& X(x)=A_{x} \sin \left(k_{x} x\right)+B_{x} \cos \left(k_{x} x\right) \\
& Y(y)=A_{y} \sin \left(k_{y} y\right)+B_{y} \cos \left(k_{y} y\right) \\
& Z(z)=A_{z} \sin \left(k_{z} z\right)+B_{z} \cos \left(k_{z} z\right)
\end{aligned}
$$

(d) Boundary conditions $X(0)=Y(0)=Z(0)=0$ lead to cancellations

$$
B_{x}=B_{y}=B_{z}=0
$$

(e) Other boundary conditions are $X\left(l_{x}\right)=Y\left(l_{y}\right)=Z\left(l_{z}\right)=0$
lead to $\quad k_{x} l_{x}=n_{x} \pi, \quad k_{y} l_{y}=n_{y} \pi, \quad k_{z} l_{z}=n_{z} \pi$

$$
n_{x}=1,2,3, \ldots, \quad n_{y}=1,2,3, \ldots, \quad n_{z}=1,2,3, \ldots .
$$

$$
\psi_{n_{x} n_{y} n_{z}}=\sqrt{\frac{8}{l_{x} \dot{l}_{y} l_{z}}} \sin \left(\frac{n_{x} \pi}{l_{x}} x\right) \sin \left(\frac{n_{y} \pi}{l_{y}} y\right) \sin \left(\frac{n_{z} \pi}{l_{z}} z\right)
$$

$$
E_{n_{x} n_{y} n_{z}}=\frac{\hbar^{2} \pi^{2}}{2 m}\left(\frac{n_{x}^{2}}{l_{x}^{2}}+\frac{n_{y}^{2}}{l_{y}^{2}}+\frac{n_{z}^{2}}{l_{z}^{2}}\right)=\frac{\hbar^{2} k^{2}}{2 m} \quad \begin{aligned}
& \mathbf{k} \equiv\left(k_{x}, k_{y}, k_{z}\right) \\
& k^{2}=\mathbf{k} . \mathbf{k} \\
& \text { dot product }
\end{aligned}
$$

Each point is an eigenstate.
Lowest energy is $\left(n_{x}, n_{y}, n_{z}\right)=(1,1,1)$.
In Figure the origin is $(0,0,0)$ which has no state.
Next levels are $\left(n_{x}, n_{y}, n_{z}\right)=(1,2,1) \ldots$ deg=3 for $(2,1,1),(1,2,1),(1,1,2)$ if this is a cube. You can assume that.

Discrete but there are so many electrons that from "far away" it looks like a continuum ...

Most electrons in atoms are trapped near the nucleus, but some ($\mathrm{d}=1,2,3, \ldots$) are free to move long distances: the conduction electrons.

There is a huge number of atoms N, even in a small crystal $(1 \mathrm{~mm})^{3}$

Number of blocks needed (2 from Pauli)

Repeating: $\quad \frac{1}{8}\left(\frac{4}{3} \pi k_{F}^{3}\right)=\frac{N d}{2}\left(\frac{\pi^{3}}{V}\right)$

Now define the density of electrons:

$$
\rho \equiv \frac{N d}{V}
$$

Then, the Fermi wavevector is:

$$
k_{F}=\left(3 \rho \pi^{2}\right)^{1 / 3}
$$

The Fermi energy is:
This in practice is a key number!

$$
E_{F}=\frac{\hbar^{2}}{2 m}\left(3 \rho \pi^{2}\right)^{2 / 3}
$$

The Fermi energy is NOT the total ground state energy but the energy of the electrons with the individual highest energy.

