
1

If the particles do not interact with one another, e.g. if 
we drop the e-e repulsion, we call them “noninteracting”.

Example: two particles inside a capacitor, far from each other. Then, each 
electron is just immersed in the potential V of the capacitor.

For non-interacting particles a wave function solution of 
the Sch. Eq. is just the product Ψ(r1,r2,t) = Ψa(r1,t)Ψb(r2,t) 
where a and b are quantum numbers, such as those of the 
H atom or the square well. 

Amazingly, “noninteracting”, a CRUDE approx., is 
sometimes a GOOD approx. qualitatively even in atoms.

In this case, V(r1,r2,t)=V(r1,t) + V(r2,t) + V(r1,r2).



2

E.g., in the H atom we could have, 
Ψ(r1,r2,t) = Ψ100(r1,t)Ψ21-1(r2,t).
Its energy is E = E100 + E21-1 .

Another eigenstate: Ψ(r1,r2,t) = Ψ530(r1,t)Ψ321(r2,t).
Its energy is E = E530 + E321 . Please check!

NOTE: Linear combinations can also be made. E.g., 
consider Ψ(r1,r2,t) = (3/5) Ψ100(r1,t)Ψ21-1(r2,t) + (4/5) 
Ψ530(r1,t)Ψ321(r2,t). Normalized to one already.

But now the electrons are “entangled” because if by 
measuring we find particle 1 is in 100, then particle 2 
must be in 21-1. The electrons instantly know about 
what is happening to the other one. 
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Finally, as usual, in all cases we must normalize 
to 1 because of the probabilistic interpretation: 

So far all was for noninteracting electrons.

The e-e repulsion, makes everything far more 
“complicated” because it “correlates” the electrons: if one 
electrons is say on the left, by mere repulsion the other 
tends to be on the right. There is an entire field of 
current research called “strongly correlated electrons”.
Here the wave function is not just linear combinations of 
products of H atom wavefunctions. We will return to this 
in later chapters.
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5.1.1 Bosons and Fermions

First, for simplicity, let us neglect the e-e repulsion. 
The energy levels are the same as in the H atom. 

Assume one particle is in state “a” (e.g. 1s, spin up)  and 
the other particle is in state “b” (e.g. 2s, spin down). 

Then, ONLY in this particular case when e-e is 
neglected, the wave function is the product: 

As already explained, to prove this, use as potential V 
simply the sum of two H-atom terms, one per particle 
i.e. just the p-e1 and p-e2 attractions.
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However, the key new concept is that if electrons 
are identical, then we cannot say “electron 1 is in 
(1s,↑)”. We can only say “an electron is in (1s,↑) ”.

In classical physics we can always “follow” 
particles and tell them apart, even if identical.
READ discussion in book page 201.

In quantum physics we cannot follow particles. 
We only know probabilities.

Thus, if a particle is in state “a” and a particle in 
state “b”, we need to symmetrize the wave 
function to account for particles being identical.
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In what sense this has been “symmetrized”? 
When r1 and r2 are exchanged, the first term 
becomes the second, and the second the first.

Then:

One way to symmetrize is to add the two cases:

ψ (r1,r2) = ψ   (r2,r1)+ +

+ +

Elementary particles where the 
“+” applies are called bosons.
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Because in QM we only care about the wave 
function in absolute value, there is another 
possible combination!

In this case, when r1 and r2 are exchanged, we 
collect a minus sign in front:

ψ (r1,r2) =    ψ   (r2,r1)- --

- -

Elementary particles where the 
“-” applies are called fermions.
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In summary, we have to accept as another law of 
Nature that elementary particles are either 
bosons, for the + case, or fermions, for the – case. 

Moreover, there is a link between the sign +- in 
the combination and the value of the spin. This 
can be shown within relativistic QM.

bosons <-> integer spin (example: photon) 

fermions <-> half-integer spin (example: electron).
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If two electrons are in the same state, such as (1s,↑), i.e. 
including spin, then the “-” wave function cancels:

Then, the famous Pauli principle can be deduced
from the fact that electrons are fermions. 

This is somewhat similar to the case when we 
deduced the uncertainty principle in QM411. 

It is important to keep the number of arbitrary 
laws to a minimum!
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Because P2 = 1 as operator, then 
the eigenvalues are +1 and -1. 

^

Let us define the exchange operator P .

^

^

Applying P twice:

^^^

^

Also [H,P]=0:^ ^

^
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Example 5.1: Consider two particles without 
spin in the 1D infinite square well

(1) If particles were distinguishable, then

For ground state n1 = n2 =1:
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First excited state n1 = 1, n2 = 2 or n1 = 2, n2 = 1 

Degeneracy = 2 

Ground state n1 = n2 =1:
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(2) If particles are bosons:

First excited state (E=5K) is now nondegenerate

Ground state (E=2K) is the same n1 = n2 =1:

ψ excited (x1,x2) = 

P ψ (x1,x2) = ψ (x2,x1) = +ψ (x1,x2) ^

P ψ excited (x1,x2) = ψ excited (x2,x1) = +ψ excited (x1,x2) 
^
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