(3) If particles are fermions:

Because temporarily I am forgetting about the spin, then I cannot place 2 particles in $n_{1}=1$.

Then, the true ground state ($E=5 K$) becomes:

$$
\psi\left(x_{1}, x_{2}\right)=\frac{\sqrt{2}}{a}\left[\sin \left(\pi x_{1} / a\right) \sin \left(2 \pi x_{2} / a\right)-\sin \left(2 \pi x_{1} / a\right) \sin \left(\pi x_{2} / a\right)\right]
$$

$$
\hat{P} \psi\left(x_{1}, x_{2}\right)=\psi\left(x_{2}, x_{1}\right)=-\psi\left(x_{1}, x_{2}\right)
$$

In summary (if spin is not included):

distinguishable bosons fermions

\author{

$\mathrm{E}=2 \mathrm{~K}$	1 state	1 state	0 state
$\mathrm{E}=5 \mathrm{~K}$	2 states	1 state	1 state

}

These differences has profound implications for many-body physics (condensed matter, nuclear, ...) and for thermodynamics

Three particles? (spin still not included)

distinguishable

bosons

fermions

$x=0$ at left wall of box.

5.1.2 Exchange Forces

This is an "effective force", not a real one.
It is another of the consequences of having symmetric or antisymmetric combinations. Consider 1D and two different states a and b.
distinguishable

$$
\psi\left(x_{1}, x_{2}\right)=\psi_{a}\left(x_{1}\right) \psi_{b}\left(x_{2}\right)
$$

bosons

$$
\psi_{+}\left(x_{1}, x_{2}\right)=\frac{1}{\sqrt{2}}\left[\psi_{a}\left(x_{1}\right) \psi_{b}\left(x_{2}\right)+\psi_{b}\left(x_{1}\right) \psi_{a}\left(x_{2}\right)\right]
$$

fermions

$$
\psi_{-}\left(x_{1}, x_{2}\right)=\frac{1}{\sqrt{2}}\left[\psi_{a}\left(x_{1}\right) \psi_{b}\left(x_{2}\right)-\psi_{b}\left(x_{1}\right) \psi_{a}\left(x_{2}\right)\right]
$$

Consider the typical "distance" between particles, via the quantity:
$\left\langle\left(x_{1}-x_{2}\right)^{2}\right\rangle=\left\langle x_{1}^{2}\right\rangle+\left\langle x_{2}^{2}\right\rangle-2\left\langle x_{1} x_{2}\right\rangle$
Distance in 1D

$$
\left\langle x_{1}^{2}\right\rangle=\int x_{1}^{2}\left|\psi_{a}\left(x_{1}\right)\right|^{2} d x_{1} \int\left|\psi_{b}\left(x_{2}\right)\right|^{2} d x_{2}=\left\langle x^{2}\right\rangle_{a}
$$

distinguishable

$$
\begin{aligned}
& \left\langle x_{2}^{2}\right\rangle=\int\left|\psi_{a}\left(x_{1}\right)\right|^{2} d x_{1} \int x_{2}^{2}\left|\psi_{b}\left(x_{2}\right)\right|^{2} d x_{2}=\left\langle x^{2}\right\rangle_{b} \\
& \left\langle x_{1} x_{2}\right\rangle=\int x_{1}\left|\psi_{a}\left(x_{1}\right)\right|^{2} d x_{1} \int x_{2}\left|\psi_{b}\left(x_{2}\right)\right|^{2} d x_{2}=\langle x\rangle_{a}\langle x\rangle_{b} \\
& \left\langle\left(x_{1}-x_{2}\right)^{2}\right\rangle_{d}=\left\langle x^{2}\right\rangle_{a}+\left\langle x^{2}\right\rangle_{b}-2\langle x\rangle_{a}\langle x\rangle_{b}
\end{aligned}
$$

The main "punchline" is that the distance we just deduced actually changes for the symmetric and antisymmetric combinations (see proof on page 204):

So even non-interacting particles (no Coulomb repulsion at all) suffer an effective force: bosons attract and fermions repel, in the sense that bosons are closer than classical particles and fermions are further apart.

This is a quantum effect, no classical analog!

Sec. 5.1.3. Now all together: the space dependence and the spin (still in 1D for simplicity)

$$
\begin{gathered}
\psi_{S}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=\frac{1}{\sqrt{2}}\left[\psi_{a}\left(x_{1}\right) \psi_{b}\left(x_{2}\right)+\psi_{b}\left(x_{1}\right) \psi_{a}\left(x_{2}\right)\right] \\
\psi \psi_{A S}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{b}\right)=\frac{1}{\sqrt{2}}\left[\psi_{a}\left(x_{1}\right) \psi_{b}\left(x_{2}\right)-\psi_{b}\left(x_{1}\right) \psi_{a}\left(x_{2}\right)\right] \\
\chi_{S}\left(\boldsymbol{S}_{1}, \boldsymbol{S}_{2}\right)=\frac{1}{\sqrt{2}}\left(\uparrow_{1} \downarrow_{2}+\downarrow_{1} \uparrow_{2}\right) \quad \chi_{A S}\left(\boldsymbol{S}_{1}, \boldsymbol{S}_{2}\right)=\frac{1}{\sqrt{2}}\left(\uparrow_{1} \downarrow_{2}-\downarrow_{1} \uparrow\right)
\end{gathered}
$$

For 2 electrons (i.e. fermions) in two different states:

$$
\begin{array}{cc|c}
\Psi=\psi_{S}\left(\mathbf{r}_{1}, \boldsymbol{r}_{2}\right) \chi_{A S}\left(\mathbf{S}_{1}, \boldsymbol{S}_{2}\right) O K! & \Psi=\psi_{S}\left(\mathbf{r}, \chi_{S}\left(\boldsymbol{S}_{1}, \boldsymbol{S}_{2}\right) \mathrm{NO}\right. \\
\Psi=\psi_{A S}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right) \chi_{S}\left(\boldsymbol{S}_{1}, \boldsymbol{S}_{2}\right) \quad O K! & \Psi=\psi_{A S}\left(\boldsymbol{r} \quad \chi_{A S}\left(\boldsymbol{S}_{1}, \boldsymbol{S}_{2}\right) \mathrm{NO}\right.
\end{array}
$$

If $a=b$, then only $\Psi=\psi_{s}\left(\mathbf{r}_{1}, \boldsymbol{r}_{2}\right) \chi_{\mathrm{As}}\left(\mathbf{S}_{1}, \boldsymbol{S}_{2}\right)$ possible (Pauli!!).

5.2 Atoms

The Hamiltonian is:

$$
H=\underbrace{\sum_{j=1}^{Z}\left\{-\frac{\hbar^{2}}{2 m} \nabla_{j}^{2}-\left(\frac{1}{4 \pi \epsilon_{0}}\right) \frac{Z e^{2}}{r_{j}}\right\}}_{\substack{\text { one-body e-p attraction } \\ \text { "the easy part" }}}+\frac{1}{2}\left(\frac{1}{4 \pi \epsilon_{0}}\right) \sum_{j \neq k}^{Z} \frac{e^{2}}{\left|\mathbf{r}_{j}-\mathbf{r}_{k}\right|}
$$

Solving exactly is impossible : $:$
No r dependence
$\boldsymbol{H} \psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{Z}\right) \chi\left(\mathbf{s}_{1}, \mathbf{s}_{2}, \ldots, \mathbf{s}_{Z}\right)=$ here

$$
=E \quad \psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{Z}\right) \chi\left(\mathbf{s}_{1}, \mathbf{s}_{2}, \ldots, \mathbf{s}_{Z}\right)
$$

