Example 5.1: Consider two particles without spin in the 1D infinite square well

$$
\begin{array}{r}
\psi_{n}(x)=\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi}{a} x\right), \quad E_{n i}=n^{2} K \\
E_{n}=\frac{\hbar^{2} k_{n}^{2}}{2 m}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m a^{2}}
\end{array}
$$

(1) If particles were distinguishable, then

$$
\psi_{n_{1} n_{2}}\left(x_{1}, x_{2}\right)=\psi_{n_{1}}\left(x_{1}\right) \psi_{n_{2}}\left(x_{2}\right), \quad E_{n_{1} n_{2}}=\left(n_{1}^{2}+n_{2}^{2}\right) K
$$

For ground state $n_{1}=n_{2}=1$:

Ground state $n_{1}=n_{2}=1$:

$$
\psi_{11}=\frac{2}{a} \sin \left(\pi x_{1} / a\right) \sin \left(\pi x_{2} / a\right), \quad E_{11}=2 K
$$

First excited state $n_{1}=1, n_{2}=2$ or $n_{1}=2, n_{2}=1$

$$
\begin{array}{ll}
\psi_{12}=\frac{2}{a} \sin \left(\pi x_{1} / a\right) \sin \left(2 \pi x_{2} / a\right), \\
\psi_{21}=\frac{2}{a} \sin \left(2 \pi x_{1} / a\right) \sin \left(\pi x_{2} / a\right),
\end{array} \quad E_{12}=5 K
$$

Degeneracy $=2$
(2) If particles are bosons:

Ground state ($\mathrm{E}=2 \mathrm{~K}$) is $\mathrm{n}_{1}=\mathrm{n}_{2}=1$ for both:

$$
\begin{array}{r}
\psi_{11}=\frac{2}{a} \sin \left(\pi x_{1} / a\right) \sin \left(\pi x_{2} / a\right), \quad E_{11}=2 K \\
\hat{P} \psi\left(x_{1}, x_{2}\right)=\psi\left(x_{2}, x_{1}\right)=+\psi\left(x_{1}, x_{2}\right)
\end{array}
$$

First excited state ($E=5 \kappa$) is now nondegenerate

$$
\psi^{\text {excited }}\left(x_{1}, x_{2}\right)=\frac{\sqrt{2}}{a}\left[\sin \left(\pi x_{1} / a\right) \sin \left(2 \pi x_{2} / a\right)+\sin \left(2 \pi x_{1} / a\right) \sin \left(\pi x_{2} / a\right)\right]
$$

$\hat{P} \psi^{\text {excited }}\left(x_{1}, x_{2}\right)=\psi^{\text {excited }}\left(x_{2}, x_{1}\right)=+\psi^{\text {excited }}\left(x_{1}, x_{2}\right)$

(3) If particles are fermions:

Because temporarily I am forgetting about the spin, then I cannot place 2 particles in $n_{1}=1$.

Then, the true ground state (E=5k) becomes:

$$
\psi\left(x_{1}, x_{2}\right)=\frac{\sqrt{2}}{a}\left[\sin \left(\pi x_{1} / a\right) \sin \left(2 \pi x_{2} / a\right)-\sin \left(2 \pi x_{1} / a\right) \sin \left(\pi x_{2} / a\right)\right]
$$

$$
\hat{P} \psi\left(x_{1}, x_{2}\right)=\psi\left(x_{2}, x_{1}\right)=-\psi\left(x_{1}, x_{2}\right)
$$

$x=0$ at left wall of box.

In summary (if spin is not included):

energy	distinguishable	bosons	fermions
$E=2 K$	1 state	1 state	0 state
E=5K	2 states	1 state	1 state
etc			

These differences have profound implications for many-body physics (condensed matter, nuclear, ...) and for their thermodynamics.

Three particles? (spin still not included)

5.1.2 Exchange Forces

This is an "effective force", not a real force.
It is another of the consequences of having symmetric or antisymmetric combinations. Consider 1D and two different states a and b.
distinguishable

$$
\psi\left(x_{1}, x_{2}\right)=\psi_{a}\left(x_{1}\right) \psi_{b}\left(x_{2}\right)
$$

bosons

$$
\psi_{+}\left(x_{1}, x_{2}\right)=\frac{1}{\sqrt{2}}\left[\psi_{a}\left(x_{1}\right) \psi_{b}\left(x_{2}\right)+\psi_{b}\left(x_{1}\right) \psi_{a}\left(x_{2}\right)\right]
$$

fermions

$$
\psi_{-}\left(x_{1}, x_{2}\right)=\frac{1}{\sqrt{2}}\left[\psi_{a}\left(x_{1}\right) \psi_{b}\left(x_{2}\right)-\psi_{b}\left(x_{1}\right) \psi_{a}\left(x_{2}\right)\right]
$$

Consider the typical "distance" between particles, via the expectation value:

$$
\begin{aligned}
& \left\langle\left(x_{1}-x_{2}\right)^{2}\right\rangle=\left\langle x_{1}^{2}\right\rangle+\left\langle x_{2}^{2}\right\rangle-2\left\langle x_{1} x_{2}\right\rangle \\
& \text { Distance in 1D, as example }
\end{aligned}
$$

$$
\left\langle x_{1}^{2}\right\rangle=\int x_{1}^{2}\left|\psi_{a}\left(x_{1}\right)\right|^{2} d x_{1} \int\left|\psi_{b}\left(x_{2}\right)\right|^{2} d x_{2}=\left\langle x^{2}\right\rangle_{a}
$$

ә|qDus!nбu!+s!p

$$
\begin{aligned}
& \left\langle x_{2}^{2}\right\rangle=\int\left|\psi_{a}\left(x_{1}\right)\right|^{2} d x_{1} \int x_{2}^{2}\left|\psi_{b}\left(x_{2}\right)\right|^{2} d x_{2}=\left\langle x^{2}\right\rangle_{b} \\
& \left\langle x_{1} x_{2}\right\rangle=\int x_{1}\left|\psi_{a}\left(x_{1}\right)\right|^{2} d x_{1} \int x_{2}\left|\psi_{b}\left(x_{2}\right)\right|^{2} d x_{2}=\langle x\rangle_{a}\langle x\rangle_{b}
\end{aligned}
$$

$$
\left\langle\left(x_{1}-x_{2}\right)^{2}\right\rangle_{d}=\left\langle x^{2}\right\rangle_{a}+\left\langle x^{2}\right\rangle_{b}-2\langle x\rangle_{a}\langle x\rangle_{b}
$$

The main "punchline" is that the distance we just deduced actually changes for the symmetric and antisymmetric combinations (see proof on page 204):

$$
\begin{aligned}
& \text { bosons bosons } \\
& \underset{\text { fermions }}{\left\langle\left(x_{1}-x_{2}\right)^{2}\right\rangle_{ \pm}}=\underset{\text { distinguishable }}{\left\langle x^{2}\right\rangle_{a}+\left\langle x^{2}\right\rangle_{b}-2\langle x\rangle_{a}\langle x\rangle_{b}} \underset{\text { fermions }}{\mp 2\left|\langle x\rangle_{a b}\right|^{2}}
\end{aligned}
$$

So even non-interacting particles (no Coulomb repulsion included) are under an effective force: bosons attract and fermions repel, in the sense that bosons are closer than classical particles and fermions are further apart.

This is a quantum effect; it has no classical analog.

Note: the expression used in the previous page for bosons and fermions contains a new term as compared with "distinguishable". The definition of the expression used there is the following.

$$
\begin{aligned}
& \left|\langle x\rangle_{a b}\right|^{2}=\langle x\rangle_{a b}\langle x\rangle_{b a}= \\
& \int \ddot{x}_{1} \psi_{a}\left(x_{1}\right)^{*} \psi_{b}\left(x_{1}\right) d x_{1} \int x_{2} \psi_{b}\left(x_{2}\right)^{*} \psi_{a}\left(x_{2}\right) d x_{2}
\end{aligned}
$$

