Sec. 5.1.3. Now all together: the space dependence and the spin (still in 1D for simplicity)

$$
\begin{gathered}
\psi_{S}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=\frac{1}{\sqrt{2}}\left[\psi_{a}\left(x_{1}\right) \psi_{b}\left(x_{2}\right)+\psi_{b}\left(x_{1}\right) \psi_{a}\left(x_{2}\right)\right] \\
\psi_{A S}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=\frac{1}{\sqrt{2}}\left[\psi_{a}\left(x_{1}\right) \psi_{b}\left(x_{2}\right)-\psi_{b}\left(x_{1}\right) \psi_{a}\left(x_{2}\right)\right] \\
\chi_{S}\left(\boldsymbol{S}_{1}, \boldsymbol{S}_{2}\right)=\frac{1}{\sqrt{2}}\left(\uparrow_{1} \downarrow+\downarrow_{2} \uparrow_{2}\right) \quad \chi_{A S}\left(\boldsymbol{S}_{1}, \boldsymbol{S}_{2}\right)=\frac{1}{\sqrt{2}}\left(\uparrow_{1} \downarrow-\downarrow_{1} \uparrow\right)
\end{gathered}
$$

For 2 electrons (i.e. fermions) in two different states:

$$
\begin{aligned}
& \Psi=\psi_{S}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right) \chi_{A S}\left(\boldsymbol{S}_{1}, \boldsymbol{S}_{2}\right) \mathrm{OK}!\quad \Psi=\psi_{S}\left(\boldsymbol{r} \quad \underset{2}{ }, \chi_{S}\left(\boldsymbol{S}_{1}, \boldsymbol{S}_{2}\right) \mathrm{NO}\right. \\
& \Psi=\psi_{A S}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right) \chi_{S}\left(\boldsymbol{S}_{1}, \boldsymbol{S}_{2}\right) \quad \text { OK! } \quad \Psi=\psi_{A S}\left(\boldsymbol{r} _\chi_{A S}\left(\boldsymbol{S}_{1}, \boldsymbol{S}_{2}\right) \mathrm{NO}\right. \\
& \text { If } a=b \text {, then only } \Psi=\psi_{s}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right) \chi_{\text {As }}\left(\boldsymbol{S}_{1}, \boldsymbol{S}_{2}\right) \text { is possible (Pauli) }
\end{aligned}
$$

5.2 Atoms

The Hamiltonian is:

$$
H=\underbrace{\sum_{j=1}^{Z}\left\{-\frac{\hbar^{2}}{2 m} \nabla_{j}^{2}-\left(\frac{1}{4 \pi \epsilon_{0}}\right) \frac{Z e^{2}}{r_{j}}\right\}}_{\begin{array}{c}
\text { one-body e-p attraction } \\
\text { "the easy part" }
\end{array}}+\frac{1}{2}\left(\frac{1}{4 \pi \epsilon_{0}}\right) \sum_{j \neq k}^{Z} \frac{e^{2}}{\left|\mathbf{r}_{j}-\mathbf{r}_{k}\right|}
$$

Solving exactly is impossible $:+$
No r dependence
$\boldsymbol{H} \psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{Z}\right) \chi\left(\mathbf{s}_{1}, \mathbf{s}_{2}, \ldots, \mathbf{s}_{Z}\right)=$ here

$$
=E \psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{Z}\right) \chi\left(\mathbf{s}_{1}, \mathbf{s}_{2}, \ldots, \mathbf{s}_{Z}\right)
$$

In writing the Sch Eq we assumed that the spins may be coupled among themselves and/or with a uniform magnetic field, but the spin orientation does not depend on position.

Because electrons are fermions, the entire wave function must be antisymmetric.

5.2.1 Helium $(Z=2)$

$$
H=\left\{-\frac{\hbar^{2}}{2 m} \nabla_{1}^{2}-\frac{1}{4 \pi \epsilon_{0}} \frac{2 e^{2}}{r_{1}}\right\}+\left\{-\frac{\hbar^{2}}{2 m} \nabla_{2}^{2}-\frac{1}{4 \pi \epsilon_{0}} \frac{2 e^{2}}{r_{2}}\right\}+\frac{1}{4 \pi \epsilon_{0}} \frac{e^{2}}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|}
$$

First, neglect the e-e repulsion (on page 322, Ch 8 , we will improve on this)

The space-like portion of the wave function in general will be $\psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\psi_{n m m}\left(\mathbf{r}_{1}\right) \psi_{n^{\prime} l}{ }^{\prime} m^{\prime}\left(\mathbf{r}_{2}\right)$, (before symmetrization):

$$
E=4\left(E_{n}+E_{n^{\prime}}\right)
$$

For ground state, we place both $\quad E_{n}=-\left[\frac{m}{2 \hbar^{2}}\left(\frac{2 e^{2}}{4 \pi \epsilon_{0}}\right)^{2}\right] \frac{1}{n^{2}}$ electrons at $n=1, l=0, m=0$.

$$
\begin{gathered}
\psi_{0}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\psi_{100}\left(\mathbf{r}_{1}\right) \psi_{100}\left(\mathbf{r}_{2}\right)=\frac{8}{\pi \dot{a}^{3}} e \\
E_{0}=8(-13.6 \mathrm{eV})=-109 \mathrm{eV} \\
\Longleftrightarrow 4+4=2^{2}+2^{2}
\end{gathered}
$$

Rapidly with increasing Z, big energies are induced!
-109 eV with $\mathrm{Z}=2$ vs -13.6 eV with $\mathrm{Z}=1$
Bohr radius reduced by factor 2; in general by a factor Z.

```
Z=1
    1s
    Z=2 Z=3
```


Some consequences of AS vs S:

Because the full wave function has a "space portion" and a "spin portion", the first excited states of He have two possibilities

$$
\begin{aligned}
& \Psi_{2 e}=\psi_{S}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right) \chi_{A S}\left(\boldsymbol{S}_{1}, \boldsymbol{S}_{2}\right) \\
& \Psi_{2 e}=\psi_{\text {AS }}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right) \chi_{S}\left(\boldsymbol{S}_{1}, \boldsymbol{S}_{2}\right) \longleftarrow \text { First excited state } \\
& \text { is triplet } S=1
\end{aligned}
$$

then, with all other things equal, the thus-far ignored e-e repulsion, that has nothing to do with spin, prefers the AS space portion because electrons are further apart than in the S space portion (see page 211). Confirmed experimentally that the first excited state has spin 1.

Now repeating using the Chemistry class cartoons: The space portion is symmetric, thus the spin portion must be antisymmetric.

$$
\psi=\psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) \chi\left(\mathbf{s}_{1}, \mathbf{s}_{2}\right)=\frac{8}{\pi \dot{a}^{3}} e^{-2\left(r_{1}+r_{2}\right) / a} \frac{1}{\sqrt{2}}\left(\uparrow_{1} \downarrow_{2}-\downarrow_{1} \uparrow\right)
$$

Excited states?

This portion is repeated: Excited states? Two options

$$
\begin{aligned}
& =\frac{1}{\sqrt{2}}\left[\psi_{100}\left(\mathbf{r}_{1}\right) \psi_{200}\left(\mathbf{r}_{2}\right)+\mu_{200}\left(\mathbf{r}_{1}\right) \psi_{100}\left(\mathbf{r}_{2}\right)\right] \frac{1}{\sqrt{2}}\left(\uparrow_{1} \downarrow_{2}-\downarrow_{1} \uparrow{ }_{2}\right)
\end{aligned}
$$

If e-e neglected, then singlet and triplet are degenerate

If e-e is brought back, at least qualitatively, then the degeneracy must be broken

Due to the effective "exchange forces", the AS space-like combination keeps the two electrons a bit further apart ... (for AS sector the exchange force is "repulsive"; for S sector is "attractive")

Then, the energy levels for two electrons is:

Real numbers from book

Note: the reference energy used is the energy of He^{+}, which is $-54.4=-4 \times(13.6) \mathrm{eV}$.
See caption page $212\left(1 \mathrm{eV} \sim 1.610^{-19} \mathrm{~J}\right)$. Thus, the lowest (1S) is (-24.5-54.4) eV, etc. compared with -109 eV dropping e-e repul.

$Z=3$, Lithium

$Z=4$, Beryllium

The excited states become complicated very fast!

