$$
\left|\frac{a-b}{\sqrt{2}}\right|^{2}=\begin{gathered}
\text { prob. of getting }-\hbar / 2 \\
\text { if } S_{x} \text { is measured }
\end{gathered}=(1 / 2)|(-1+i) / \sqrt{6}|^{2}=1 / 6
$$

prob. of getting $+\hbar / 2$ or $-\hbar / 2 \quad$ Indeed $5 / 6+1 / 6=1$. if S_{x} is measured has to be 1 .

What is the "expectation value" of S_{x} ? I.e. what is $\left\langle S_{x}\right\rangle$?

$$
\frac{5}{6}\left(+\frac{\hbar}{2}\right)+\frac{1}{6}\left(-\frac{\hbar}{2}\right)=\frac{\hbar}{3}
$$

Petite challenge for yourself. What is $\left\langle S_{z}\right\rangle$? How about <Sy>? I want this to be an opportunity for students to interact.

Alternatively, you get the

$$
\mathbf{S}_{x}=\frac{\hbar}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \text { same }\left\langle S_{x}\right\rangle=\hbar / 3 \text { as follows: }
$$

Check last step!
$(e, f)\binom{c}{d}=$
$=e . c+f . d$
σ_{x} Pauli matrix

$$
\frac{\hbar}{2}\binom{2 / \sqrt{6}}{(1+i) / \sqrt{6}}
$$

$$
1 \text { 2 (10ヶ7vo) }
$$

$$
\left.\begin{array}{c}
\hbar / 2 \\
0
\end{array}\right)\binom{(1+i) / \sqrt{6}}{2 / \sqrt{6}}=\frac{\hbar}{3}
$$

1
horizontal spinor with each component conjugated !!
\uparrow
vertical spinor as originally given, normalized to 1

Until you confirm these results by yourself, you will NOT be sure you REALLY know how to deal with 2×2 matrices.

Side comment: The spin appears naturally from the Dirac equation that links quantum mechanics and relativity.

Adapted from Wikipedia on Dirac equation:

(The Dirac eq.) provided a theoretical justification for the introduction of several component wave functions in Pauli's phenomenological theory of spin (note: Pauli theory is what we are doing); the wave functions in the Dirac theory are spinors of four complex numbers, two of which resemble the Pauli spinors in the non-relativistic limit, in contrast to the Schrödinger equation which described wave functions with only one complex value.

4.4.2 Electron in a magnetic field (page 172)

When an electron is at rest inside a uniform magnetic field \mathbf{B}, the Hamiltonian can be shown to be:

$$
H=-\boldsymbol{\mu} \cdot \mathbf{B}=-\gamma \mathbf{B} \cdot \mathbf{S}
$$

$\mu=\gamma S$
$\gamma=$ "gyromagnetic ratio"
$=-|e| / m$ for electrons
(factor 2 difference with classical E\&M calculation due to relativity)

Repeating: A spinning charged object is made of little loops of current.
total charge q total mass m

Each little loop generates a little magnetic field. They add up to a net dipole magnetic moment.
 This is " μ ". If $q<0$, then current and dipole invert; μ and S are antiparallel

Not in book: When a little loop of current is introduced in a strong external magnetic field, the Lorentz force on the moving charges generates a torque.

The torque tries to align the dipole moment with B, and the energy is found to be in E\&M

$$
\dot{H}=-\boldsymbol{\mu} \cdot \mathbf{B}
$$

Suppose for simplicity that the field points along the \mathbf{z}-axis i.e. $\mathbf{B}=(0,0,1) B_{0}$. Then,

$$
\mathbf{H}=-\gamma \cdot B_{0} \mathbf{S}_{z}=-!_{2}^{\prime} 3_{0} \hbar\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Eigenfunctions, or eigenspinors, are:
Change of notation to bold only to emphasize 2×2 character. Optional but recommended!

$$
\begin{array}{ll}
\text { Optional } & \chi_{+}=\binom{1}{0} \\
\mathbf{H}\binom{1}{0}=-\left(\gamma B_{0} \hbar\right) / 2\binom{0}{1} \\
\begin{array}{l}
\text { For spin up, this is } \\
0 \\
\text { energy eigenvalue } E_{+}
\end{array} & \begin{array}{l}
\text { For spin } \\
\text { down, the } \\
\text { energy } E_{-} \\
\text {changes } \\
\text { sign. }
\end{array}
\end{array}
$$

The Hamiltonian is time independent because the magnetic field is constant. Actually, all Hamiltonians we studied in P411 were time independent.

If H is time independent, then the general solution is a linear combination of stationary states. In the square well potential there were infinite number of states (Ch2 P411)

$$
\Psi(x, t)=\sum_{n=1}^{\infty} c_{n} \psi_{n}(x) e^{-i E_{n} t / \hbar}
$$

Focusing only on $S=1 / 2$, all much easier. Just two states! The most general spinor is (page 173):

$$
\chi(t)=a \chi_{+} e^{-i E_{+} t / \hbar}+b \chi_{-} e^{-i E_{-} t / \hbar}=\binom{a e^{i \gamma B_{0} t / 2}}{b e^{-i \gamma B_{0} t / 2}}
$$

The values of " a " and " b " are fixed by initial condition at $t=0$, as we did in Ch. 2 for the coefficients c_{n}.

$$
\chi(0)=\binom{a}{b}
$$

We also need to normalize: $\quad|a|^{2}+|b|^{2}=1$
When we have 2 unknowns linked as in the normalization condition, we can parametrize with an angle as

$$
a=\cos (\alpha / 2) \quad b=\sin (\alpha / 2)
$$

because

$$
|a|^{2}+|b|^{2}=\cos ^{2}(\alpha / 2)+\sin ^{2}(\alpha / 2)=1
$$

The factor $\frac{1}{2}$ for the angle is only for future convenience in next pages.

Then, we arrive to a simple formula:

$$
\chi(t)=\binom{\cos (\alpha / 2) e^{i \gamma B_{0} t / 2}}{\sin (\alpha / 2) e^{-i \gamma B_{0} t / 2}}
$$

Physical meaning of angle α ? Let us repeat what we did before in the example $x=\binom{a}{b}$, but now for the spinor in a magnetic field.

$$
\begin{aligned}
\left\langle S_{x}\right\rangle= & \chi(t) \mathbf{S}_{x} \chi(t)=\left(\cos (\alpha / 2) e^{-i \gamma B_{0} t / 2}, \sin (\alpha / 2) e^{i \gamma B_{0} t / 2}\right) \\
& \times \frac{\hbar}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{\cos (\alpha / 2) e^{i \gamma B_{0} t / 2}}{\sin (\alpha / 2) e^{-i \gamma B_{0} t / 2}} \\
= & \frac{\hbar}{2} \sin \alpha \cos \left(\gamma B_{0} t\right) .
\end{aligned}
$$

Make sure you verify this calculation! Same for 〈Sy ${ }_{y}$ > and $\left\langle S_{z}\right\rangle$, page 173.

Repeating for the other components:

This is the same as a classical dipole oscillating in a magnetic field. It is "precessing" ...

