Not in book:

Why the electron precesses instead of simply aligning with the magnetic field to minimize energy?

REASON: the energy is conserved -- the electron cannot change its energy -- because the Hamiltonian is time independent!

$$
\text { Consider } \chi(t)=\binom{\cos (\alpha / 2) e^{i \gamma B_{0} t / 2}}{\sin (\alpha / 2) e^{-i \gamma B_{0} t / 2}}
$$

$\langle\mathbf{H}\rangle=\chi(t)^{\dagger} \mathbf{H} \chi(t)=E_{+} \cos ^{2}(\alpha / 2)+E_{-} \sin ^{2}(\alpha / 2)$
where $\begin{aligned} & E_{+}=-\left(\gamma B_{0} t\right) / 2 \\ & E_{-}=+\left(\gamma B_{0} t\right) / 2\end{aligned}$

Time independent! The energy does not change in a t-independent Hamiltonian

Anticipating what is coming in Ch. 7:

4.4.3 Addition of angular momenta (page 176)

First time we go beyond one electron!
Suppose we have TWO particles, each with spin $\frac{1}{2}$.
We focus on the spin, not the actual relative motion. Also could be 2 electrons or 1 electron and 1 proton.

Because each spin can be up or down, overall, regardless of real distance between electrons, we have 4 cases:

$$
\uparrow \uparrow, \uparrow \downarrow, \downarrow \uparrow, \downarrow \downarrow
$$

We want to know: what is the total spin? Natural answers are $1=1 / 2+1 / 2$ or $0=1 / 2-1 / 2$. But why not other numbers? Classically, any number between 1 and 0 is good.

Note: We will NOT deal with the Clebsch-Gordan coefficients but you will have all the foundations to handle that page of the book.
means: operators only of particle 1
The total spin operator is:
$\mathbf{S} \equiv \mathbf{S}^{(1)}+\mathbf{S}^{(2)}$

The z-component of the total spin operator is:

$$
S_{z}=S_{z}^{(1)}+S_{z}^{(2)}
$$

$$
\begin{gathered}
\uparrow \uparrow, \uparrow \downarrow, \downarrow \uparrow, \downarrow \downarrow \\
S_{z} \chi_{1} \chi_{2}=\left(S_{z}^{(1)}+S_{z}^{(2)}\right) \chi_{1} \chi_{2}=\left(S_{z}^{(1)} \chi_{1}\right) \chi_{2}+\chi_{1}\left(S_{z}^{(2)} \chi_{2}\right) \\
\uparrow=\left(\hbar m_{1} \chi_{1}\right) \chi_{2}+\chi_{1}\left(\hbar m_{2} \chi_{2}\right)=\hbar(\underbrace{\left(m_{1}+m_{2}\right)}_{m} \chi_{1} \chi_{2}
\end{gathered}
$$

E.g. for particle 1, this can be
up or down along the z axis

$$
S_{z} \chi_{1} \chi_{2}=\hbar \uparrow, \uparrow \downarrow, \downarrow \uparrow, \downarrow \downarrow, m \chi_{1} \chi_{2} \rightarrow \begin{aligned}
& \uparrow \uparrow: m=1 \\
& \uparrow \downarrow: m=0 \\
& \downarrow \uparrow: m=0 ; \\
& \downarrow \downarrow: m=-1
\end{aligned}
$$

What does this mean? There are 2 combinations with $m=0$? Use "lowering operators" (or "raising operators") to clarify and find special combinations.

$$
\begin{gathered}
S_{-}=S_{-}^{(1)}+S_{-}^{(2)} \\
S_{-}(\uparrow \uparrow)=\left(S_{-}^{(1)} \uparrow\right) \uparrow+\uparrow\left(S_{-}^{(2)} \uparrow\right) \\
=(\hbar \downarrow) \uparrow+\uparrow(\hbar \downarrow)=\hbar(\downarrow \uparrow+\uparrow \downarrow)
\end{gathered}
$$

This suggests the sum up down + down up "emerges" as special.

Not in book (but probably in HW):

$$
\begin{gathered}
S_{-}(\downarrow \uparrow+\uparrow \downarrow)=\left(S_{-}^{(1)}+S_{-}^{(2)}\right)(\downarrow \uparrow+\uparrow \downarrow)= \\
=(\underbrace{S_{-}^{(1)} \downarrow}_{=0}) \uparrow+\underbrace{\left(S_{-}^{(1)} \uparrow\right)}_{(\hbar \downarrow)} \downarrow+\downarrow \underbrace{\left(S_{-}^{(2)} \uparrow\right)}_{(\hbar \downarrow)}+\uparrow \underbrace{S_{-}^{(2)} \downarrow}_{=0})= \\
=2 \hbar \downarrow \downarrow
\end{gathered}
$$

This means that $\uparrow \uparrow,(\downarrow \uparrow+\uparrow \downarrow)$, and $\downarrow \downarrow$ are linked forming a set called the triplet (see (4.175) book, page 177)

This takes care of 3 states. How about number 4?
Make sure you understand this page and next, step by step.

Not in detail in book (probably in HW you will repeat):

$$
\begin{gathered}
\quad \begin{array}{l}
S_{-}(\downarrow \uparrow--\uparrow \downarrow)=(S_{-}^{(1)}+\underbrace{S_{-}^{(2)}}_{-0})(\downarrow \uparrow-\uparrow \downarrow)= \\
=(\underbrace{(1)}_{-} \downarrow) \uparrow-\underbrace{\left.S_{-}^{(1)} \uparrow\right)}_{(\hbar \downarrow)} \downarrow+\downarrow \underbrace{\left(S_{-}^{(2)} \uparrow\right)}_{(\hbar \downarrow)}-\uparrow(\underbrace{\left.S_{-}^{(2)} \downarrow\right)}_{=0}= \\
=0 .
\end{array} . \\
=0 .
\end{gathered}
$$

If you apply S_{+}it gives zero as well. This means that $(\uparrow \downarrow-\downarrow \uparrow)$ is alone forming a singlet.

$$
\left\{\begin{array}{ll}
|11\rangle=\uparrow \uparrow \\
|10\rangle=\frac{1}{\sqrt{2}}(\uparrow \downarrow+\downarrow \uparrow) \\
|1-1\rangle=\downarrow \downarrow
\end{array}\right\} \quad s=1 \begin{aligned}
& \text { (triplet: } \\
& 3 \text { discret } \\
& \text { projectio } \\
&
\end{aligned}
$$

$$
\left\lceil\left\{|00\rangle=\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow)\right\} \quad s=0\right.
$$

What we called the "triplet" has three states, but is it truly a state of total spin 1?

Consider the total spin operator:
$S^{2}=\left(\mathbf{S}^{(1)}+\mathbf{S}^{(2)}\right) \cdot\left(\mathbf{S}^{(1)}+\mathbf{S}^{(2)}\right)=\left(S^{(1)}\right)^{2}+\left(S^{(2)}\right)^{2}+2 \mathbf{S}^{(1)} \cdot \mathbf{S}^{(2)}$
Example for state "up down":

$$
\begin{aligned}
\mathbf{S}^{(1)} \cdot \mathbf{S}^{(2)}(\uparrow \downarrow)= & \left(S_{x}^{(1)} \uparrow\right)\left(S_{x}^{(2)} \downarrow\right)+\left(\begin{array}{c}
\left.\left(S_{y}^{(1)} \uparrow\right)\right)\left(S_{y}^{(2)} \downarrow\right)+\left(S_{z}^{(1)} \uparrow\right)\left(S_{z}^{(2)} \downarrow\right) \\
= \\
=\left(\frac{\hbar}{2} \downarrow\right)\left(\frac{\hbar}{2} \uparrow\right)+\left(\frac{\hbar \hbar}{2} \downarrow\right)\left(\frac{-i}{2} \uparrow\right)+\left(\frac{\hbar}{2} \uparrow\right)\left(\frac{-\hbar}{2} \downarrow\right) \\
= \\
\frac{\hbar^{2}}{4}(2 \downarrow \uparrow-\uparrow \downarrow) \\
\end{array} \quad \frac{\hbar}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\binom{1}{0}=\frac{\hbar}{2}\binom{0}{i}=\frac{\hbar}{2}\binom{0}{1}\right.
\end{aligned}
$$

Similarly: $\quad \mathbf{S}^{(1)} \cdot \mathbf{S}^{(2)}(\downarrow \uparrow)=\frac{\hbar^{2}}{4}(2 \uparrow \downarrow-\downarrow \uparrow)$

$$
\begin{gathered}
\mathbf{S}^{(1)} \cdot \mathbf{S}^{(2)}|10\rangle=\frac{\hbar^{2}}{4} \frac{1}{\sqrt{2}}(2 \downarrow \uparrow-\uparrow \downarrow+2 \uparrow \downarrow-\downarrow \uparrow)=\frac{\hbar^{2}}{4}|10\rangle . \\
\quad|10\rangle=\frac{1}{\sqrt{2}}(\uparrow \downarrow+\downarrow \uparrow)
\end{gathered}
$$

Total spin

$$
s(s+1)=1 / 2(1 / 2+1)=3 / 4
$$

for individual spins

Same story with "singlet" (left as exercise):

$$
\mathbf{S}^{(1)} \cdot \mathbf{S}^{(2)}|00\rangle=\frac{\hbar^{2}}{4} \frac{1}{\sqrt{2}}(2 \downarrow \uparrow-\uparrow \downarrow-2 \uparrow \downarrow+\downarrow \uparrow)=-\frac{3 \hbar^{2}}{4}|00\rangle
$$

$$
S^{2}|00\rangle=\left(\frac{3 \hbar^{2}}{4}+\frac{3 \hbar^{2}}{4}-2 \frac{3 \hbar^{2}}{4}\right)|00\rangle=\begin{array}{|}
\uparrow \\
S(S+1)=0(0+1) \\
=0 \text { for total spin }
\end{array}
$$

Also left as exercise, application of total spin over "up up" $|11\rangle$ and "down down" $|1-1\rangle$.

