4.4.3 Addition of angular momenta (page 176)

Important: First time we go beyond one electron!

 Suppose we have TWO particles, each with spin $\frac{1}{2}$.Here we focus on the spin, not the actual relative motion. Could be 2 electrons or 1 electron and 1 proton ...

Because each spin can be up or down, overall, regardless of real distance between electrons, we have 4 cases:

$$
\uparrow \uparrow, \uparrow \downarrow, \downarrow \uparrow, \downarrow \downarrow
$$

We want to know: what is the total spin? Natural answers are $1=1 / 2+1 / 2$ or $0=1 / 2-1 / 2$. But why not other numbers? Classically, any number between 1 and 0 is good.

This means operators of particle 1. Now we have tolabel each particle.
The total spin operator is:

$$
\mathbf{S} \equiv \mathbf{S}^{(1)}+\mathbf{S}^{(2)}
$$

The z-component of the total spin operator is:

$$
S_{z}=S_{z}^{(1)}+S_{z}^{(2)}
$$

$$
\begin{gathered}
\uparrow \uparrow, \uparrow \downarrow, \downarrow \uparrow, \downarrow \downarrow \\
\qquad \begin{array}{c}
\uparrow \downarrow \\
S_{2} \chi_{1} \chi_{2}= \\
\left.\int_{\text {or particle 1, this can be }}^{\left(S_{z}^{(1)}\right.}+S_{z}^{(2)}\right) \chi_{1} \chi_{2}=\left(S_{z}^{(1)} \chi_{1}\right) \chi_{2}+\chi_{1}\left(S_{z}^{(2)} \chi_{2}\right)
\end{array} \\
\left(\hbar m_{1} \chi_{1}\right) \chi_{2}+\chi_{1}\left(\hbar m_{2} \chi_{2}\right)=\hbar \underbrace{\left(m_{1}+m_{2}\right)}_{m} \chi_{1} \chi_{2}
\end{gathered}
$$

E.g. for particle 1, this can be up or down along the z axis.

$$
S_{z} \chi_{1} \chi_{2}=\hbar \uparrow, \uparrow \downarrow, \downarrow \uparrow, \downarrow \downarrow, \quad \begin{aligned}
& \uparrow \uparrow: m=1 \\
& \uparrow \downarrow: m=0 \\
& \downarrow \uparrow: m=0 ; \\
& \downarrow \downarrow: m=-1 .
\end{aligned}
$$

What does this mean? There are 2 combinations with $m=0$? Use "lowering operators" (or "raising operators") to clarify and find special combinations.

$$
\begin{aligned}
& S_{-}=S_{-}^{(1)}+S_{-}^{(2)} \quad \begin{array}{l}
\text { Reminder: } \\
\mathbf{S}_{-}=\hbar \\
S_{-}(\uparrow \uparrow)= \\
=\left(S_{-}^{(1)} \uparrow\right) \uparrow+\uparrow\left(S_{-}^{(2)} \uparrow\right) \\
=(\hbar \downarrow) \uparrow+\uparrow(\hbar \downarrow)=\hbar(\downarrow \uparrow+\uparrow \downarrow)
\end{array}
\end{aligned}
$$

This suggests the sum up down + down up "emerges" as special. Also note up-down is not the same as down-up! The "order" of particles must be respected.

Not in book (but probably in HW):

$$
\begin{aligned}
& \quad S_{-}(\downarrow \uparrow+\uparrow \downarrow)=\left(S_{-}^{(1)}+S_{-}^{(2)}\right)(\downarrow \uparrow+\uparrow \downarrow)= \\
& =(\underbrace{\left.S_{-}^{(1)} \downarrow\right)}_{=0} \uparrow+(\underbrace{\left.S_{-}^{(1)} \uparrow\right)}_{(\hbar \downarrow)} \downarrow+\downarrow(\underbrace{\left(S_{-}^{(2)} \uparrow\right.}_{(\hbar \downarrow)})+\uparrow \underbrace{s_{-}^{(2)} \downarrow}_{=0})= \\
& =2 \hbar \downarrow \downarrow
\end{aligned}
$$

This means that $\uparrow \uparrow,(\downarrow \uparrow+\uparrow \downarrow)$, and $\downarrow \downarrow$ are linked forming a set called the triplet (see (4.175) book, page 177)

This takes care of 3 states. How about number 4?
Make sure you understand this page and next, step by step.

In book not sufficient detail (probably in HW you will repeat):

$$
\begin{gathered}
\quad S_{-}(\downarrow \uparrow-\uparrow \uparrow \downarrow)=\left(S_{-}^{(1)}+S_{-}^{(2)}\right)(\downarrow \uparrow-\uparrow \downarrow)= \\
=(\underbrace{S_{-}^{(1)} \downarrow}_{=0}) \uparrow-\underbrace{(\underbrace{(1)}_{-} \uparrow) \downarrow}_{(\hbar \downarrow)} \downarrow \downarrow \underbrace{\left(S_{-}^{(2)} \uparrow\right)}_{(\hbar \downarrow)}-\uparrow(\underbrace{S_{-}^{(2)} \downarrow}_{=0})= \\
=0 .
\end{gathered}
$$

If you apply S_{+}it gives zero as well. This means that $(\uparrow \downarrow-\downarrow \uparrow$) is a state alone (we say is non degenerate) forming a singlet.

$$
\begin{aligned}
& \left\{\begin{array}{ll}
|11\rangle & =\uparrow \uparrow \\
|10\rangle & =\frac{1}{\sqrt{2}}(\uparrow \downarrow+\downarrow \uparrow) \\
|1-1\rangle & =\downarrow \downarrow
\end{array}\right\} \quad s=1 \quad \begin{array}{l}
\text { (triplet: } \\
3 \text { discrete } \\
\text { projections) }
\end{array} \\
& \uparrow\left\{|00\rangle=\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow)\right\} \quad s=\begin{array}{l}
\begin{array}{l}
\text { (singlet: } \\
\text { only 1 } \\
\text { projection }
\end{array}
\end{array} \\
& |s m\rangle \quad s \text { denotes the total spin and } m \text { denotes } \\
& \text { the } z \text {-axis projection of the total spin. }
\end{aligned}
$$

