What is the value of q ? For this purpose I have to use another common trick: periodic boundary conditions.

Instead of a very long line of length $\sim \mathrm{Na}$ with $\mathrm{N} \sim 10^{23}$ we will use a circle with the same perimeter. The physics cannot depend on this boundary effect.

$$
\psi(x+N a)=\psi(x)
$$

This trick fixes the value of q because

$$
\begin{aligned}
\psi(x+a)= & e^{i q a} \psi(x) \longrightarrow \psi(x+a)=e^{\stackrel{\stackrel{N}{N}^{i q a}}{N}} \psi(x)=\psi(x) \\
& e^{i N q a} \psi(x)=\psi(x)
\end{aligned}
$$

If $e^{i N q a} \psi(x)=\psi(x)$, then $e^{i N a a}=1$ i.e. $N q a=2 \pi n$

$$
q=\frac{2 \pi n}{N a}, \quad(n=0, \pm 1, \pm 2, \ldots) . \quad \text { Or } n=0,1,2, \ldots, N-1
$$

This theorem is independent of the "Dirac comb" we will use. It is valid for any periodic potential.

The importance is that you solve in the range $0<x<a$, and then simply repeat the solution with different values of q, i.e. with different phase factors.

The two deltafunctions discussed before correspond to $q=0$ and $q=\pi$.

In the Dirac comb, in between the delta functions the potential is $V(x)=0$, and the solutions are simple $\left[(\text { khbar })^{2}=2 m E\right]$

$$
\psi(x)=A \sin (k x)+B \cos (k x), \quad(0<x<a)
$$

Because we know the solution in the range $0<x<a$, then we know it everywhere, according to Bloch's theorem:

$$
\psi(x+a)=e^{i q a} \psi(x)
$$

This gives the wave function in the cell to the "right", if I have the wave function in the cell to the "left". Sometimes I have the wave function in the "right" cell, and I want the wave function in the "left cell": $\psi(x)=e^{-i q a} \psi(x+a)$.

$$
\psi(x)=e^{-i q a}[A \sin k(x+a)+B \cos k(x+a)], \quad(-a<x<0)
$$

$$
\psi(x+a)
$$

To fix A and B, as with the delta function potential in $Q M$ P411, we will use:
(1) the wave function has to be continuous at $x=0$.
(2) the first derivative cannot be continuous for a delta function, but its discontinuity we know how to calculate.

Reminder: see page 65 of the book:

$$
\begin{array}{r}
-\frac{\hbar^{2}}{2 m} \int_{-\epsilon}^{+\epsilon} \frac{d^{2} \psi}{d x^{2}} d x+\int_{-\epsilon}^{+\epsilon} V(x) \psi(x) d x=E \int_{-\epsilon}^{+\epsilon} \psi(x) d x \\
\Delta\left(\frac{d \psi}{d x}\right) \equiv \lim _{\epsilon \rightarrow 0}\left(\left.\frac{d \psi}{d x}\right|_{+\epsilon}-\left.\frac{d \psi}{d x}\right|_{-\epsilon}\right)=\frac{2 m}{\hbar^{2}} \lim _{\epsilon \rightarrow 0} \int_{-\epsilon}^{+\epsilon} V(x) \psi(x) d x \\
+\alpha \delta(x) \tag{7}\\
\\
=\frac{2 m \alpha}{\hbar^{2}} \psi(0)
\end{array}
$$

(1) Continuity at $x=0$ requires that wave function

$$
\psi(x)=A \sin (k x)+B \cos (k x), \quad(0<x<a)
$$

at $x=0$, i.e. $\psi(x=0)=B$, be equal to

$$
\psi(x)=e^{-q q a}[A \sin k(x+a)+B \cos k(x+a)], \quad(-a<x<0)
$$

at $x=0$, which is $\psi(x=0)=e^{-i q a}[A \sin (k a)+B \cos (k a)]$
Thus, the first equation is:

$$
B=e^{-i q a}[A \sin (k a)+B \cos (k a)]
$$

q has to do with periodicity of the lattice; k has to do with the energy E. Do not confuse them.
(2) The derivative of each of the two wave functions can be easily calculated and then specialized for $x=0$.

So, we have the two equations for A and B, easy to solve. There is no "independent" term i.e. each term has either A or B in front. Solving, leads to the condition that must be satisfied:

$$
\cos (q a)=\cos (k a)+\frac{m \alpha}{\hbar^{2} k} \sin (k a)
$$

Introducing: $\quad z \equiv k a, \quad$ and $\quad \beta \equiv \frac{m \alpha a}{\hbar^{2}}$ then we arrive to:

Bounded between Unbounded
-1 and 1

Range of $\cos (q a)$. $q a=2 \pi n / N$ is so dense it forms a continuum.

Repeating: $q a=2 \pi n / N$ is so dense it forms

