The two deltafunctions discussed before correspond to $q=0$ and $q=\pi$.

This is because for $\mathrm{N}=2$, the possible
 values of $n=0,1,2, \ldots$, $\mathrm{N}-1$ are just $n=0,1$.

In the Dirac comb, in between the delta functions the potential is $V(x)=0$, and the solutions are simple $\left[(k h b a r)^{2}=2 m E\right]$

$$
\psi(x)=A \sin (k x)+B \cos (k x), \quad(0<x<a)
$$

Because we know the solution in the range $0<x<a$, then we know it everywhere, according to Bloch's theorem:

$$
\psi(x+a)=e^{i q a} \psi(x)
$$

This gives the wave function in the cell to the "right", if I have the wave function in the cell to the "left". Sometimes I have the wave function for the "right" cell, and I want the wave function for the "left cell": then use $\psi(x)=e^{-i q a} \psi(x+a)$.

$$
\psi(x)=e^{-i q a}[A \sin k(x+a)+B \cos k(x+a)], \quad(-a<x<0)
$$

$$
\psi(x+a)
$$

To fix A and B, as with the delta function potential in QM P411, we will use:
(1) the wave function has to be continuous at $x=0$.
(2) the first derivative cannot be continuous for a delta function, but its discontinuity we know how to calculate.

Reminder: see again page 65 of the book for condition (2)

$$
\begin{array}{r}
-\frac{\hbar^{2}}{2 m} \int_{-\epsilon}^{+\epsilon} \frac{d^{2} \psi}{d x^{2}} d x+\int_{-\epsilon}^{+\epsilon} V(x) \psi(x) d x=E \int_{-\epsilon}^{+\epsilon} \psi(x) d x \\
\Delta\left(\frac{d \psi}{d x}\right) \equiv \lim _{\epsilon \rightarrow 0}\left(\left.\frac{d \psi}{d x}\right|_{+\epsilon}-\left.\frac{d \psi}{d x}\right|_{-\epsilon}\right)=\frac{2 m}{\hbar^{2}} \lim _{\epsilon \rightarrow 0} \int_{-\epsilon}^{+\epsilon} V(x) \psi(x) d x \\
\square \\
\hline
\end{array}
$$

(1) Continuity at $x=0$ requires that wave function

$$
\psi(x)=A \sin (k x)+B \cos (k x), \quad(0<x<a)
$$

at $x=0$, i.e. $\psi(x=0)=B$, be equal to

$$
\psi(x)=e^{-i q a}[A \sin k(x+a)+B \cos k(x+a)], \quad(-a<x<0)
$$

at $x=0$, which is $\psi(x=0)=e^{-i q a}[A \sin (k a)+B \cos (k a)]$
Thus, the first equation is:

$$
B=e^{-i q a}[A \sin (k a)+B \cos (k a)]
$$

q has to do with periodicity of the lattice; k has to do with the energy E inside each cell. Do not confuse them.
(2) The derivative of each of the two wave functions can be easily calculated and then specialized for $x=0$.

So, we have the two equations for A and B, easy to solve. There is no "independent" term i.e. each term has either \boldsymbol{A} or \boldsymbol{B} in front. Solving, leads to the condition that must be satisfied (derivation next page, just FYI):

$$
\cos (q a)=\cos (k a)+\frac{m \alpha}{\hbar^{2} k} \sin (k a)
$$

Derivation of last formula of previous page, FYI

The two equations are

$$
\begin{gather*}
B=e^{-i g a}[A \sin (k a)+B \cos (k a)] \tag{1}\\
k A-e^{-i g a} k[A \cos (k a)-B \sin (k a)]=\frac{2 m \alpha B}{\hbar^{2}} \tag{2}
\end{gather*}
$$

From (1): $\quad \frac{B}{A}=\frac{e^{-i q^{a}} \sin (k a)}{1-e^{-i q^{a} \cos (k a)}}$
From (2): $\frac{B}{A}=\frac{k\left[1-e^{-i q} \cos \left(k_{\alpha}\right)\right]}{\frac{2 m \alpha}{\hbar^{2}}-e^{-i q^{2}} k \sin (k a)}$. Then, we male $\frac{B}{A}=\frac{B}{A}$

$$
\begin{aligned}
& e^{-i \psi^{2}} \sin (k \alpha)\left[\frac{2 m \alpha}{\hbar^{2}}-e^{-i q \alpha} k \sin (k \alpha)\right]=k\left[1-e^{-i q \alpha} \cos (k \alpha)\right]\left[1-e^{-i q \alpha} \cos (k \alpha)\right] \\
& \text { K }\left[e^{-i g a} \frac{2 m \alpha}{\hbar^{2} k} \sin (k) \cdot-e^{-i 2 g a} \sin ^{2}(k \alpha)\right]=K\left[1-2 e^{-i q \alpha} \cos (k \alpha)+e^{-i 2 g a} \cos ^{2}(k \alpha)\right] \\
& \sin (k a) e^{-i q a} \frac{2 m \alpha}{\hbar^{2} k}+2 e^{-i q a} \cos (k a)=e^{-i 2 g a}[\underbrace{\left.\cos ^{2}(k a)+\sin ^{2}(k a)\right]}_{-i g a}+1 \\
& \frac{m \alpha \sin (k a)}{\hbar^{2} k}+\cos (k a)=\underbrace{\frac{1}{2} e^{-i g a}+\frac{1}{2} e^{i g a}}_{\cos (g a)}
\end{aligned}
$$

Then, $\quad \cos \left(q_{\alpha}\right)=\cos \left(k_{a}\right)+\frac{m \alpha}{\hbar^{2} k} \sin (k \alpha)$.

Introducing: $\quad z \equiv k a, \quad$ and $\quad \beta \equiv \frac{m \alpha a}{\hbar^{2}}$
then we arrive to:

$$
\text { Bounded between } \begin{array}{|c|}
\cos (q a) \\
\cos ^{\cos (z)+\beta \frac{\sin (z)}{z}}
\end{array}=f(z)
$$

-1 and 1

Range of $\cos (q a)$. $q a=2 \pi n / N$ is so dense it forms a continuum.

