
size r1 ~ 10-15 m
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Famous example: Gamow’s 
theory of alpha decay (1928). 
First use of QM in nuclear.   

Z=leftover nucleus

V(r)
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Turns out, the integral can be done exactly (see book), and 
moreover it can be simplified considerably if 

As “m” we use the mass of an alpha 
particle ~ 4 proton masses

Z is the positive charge of the nucleus

1 fm = 10-15 m is 
the size of a 
typical nucleus

Full integral After some approximations

where
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If alpha particles have an average velocity “v” 
inside the well, then to travel from r=0 to r=r1 it 
takes t=r1/v, i.e. hits the walls with a period 2r1/v. 
At each collision the probability of remaining 
trapped is high e+2g (or prob. of escape is low e-2g)

The lifetime then is t = (2r1/v) e+2g.

Then, ln(t)= ln(2r1/v) +2g   with

g ~

Note: the energy of the 
alpha particle is not 
arbitrary but resembles 
that of a square well.

Experiments confirm that lifetime 
depends ~ linearly on 1/sqrt{Ea} on 
a range of lifetimes from 109 years 
to tiny fractions of seconds! 
(Geiger-Nuttall law)

Z=92

Z=84

Z=88~1 year

~1000 years

~109 years

~1 minute

~ tiny fractions 

of a second
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https://www.youtube.com/watch?v=lQapfUcf4Do

You may remember the video I asked you to watch last semester about 
how the sun proceeds with nuclear fusion … even though it is not hot 
enough to overcome the Coulombic barrier for the fusion of four 
protons into a He nucleus (plus two neutrons plus two positrons ejected).
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The Ch 9 portion of the lecture ended 
here. The next three pages (page 6,7,8) 
are only for completeness. It is not 
material that you need to know for Test 3 
(final exam).Read if you like only.
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9.3: The connection region (not for Test3)

In many examples we use the WKB approximation in cases 
V(x) has vertical walls. 

Naively we may simply be tempted to try to match 
coefficients at the boundary.

But in most real situations, this is not the case, such as in 
alpha decay. We may try the “usual” procedure: 
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In practice a “patching procedure” is 
followed, where a “third region” is 
introduced where the potential is 
linearized

Expected result

However, at exactly the “x” where we switch from 
classical to non-classical then p(x) = V(x)-E is zero. 
Then, WKB wave functions explode. Not realistic! 
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A problem with a linear potential is exactly solvable and 
leads to the Airy functions, complicated functions usually 
given in an integral form. They are oscillatory on one side 
and exponential on the other.

The WKB patching procedure would be too complicated to 
describe in detail, just be aware of its existence.

If we had a sharp wall on one 
side (not the actual problem at 
hand) the shape of the Airy 
functions is as shown (leading 
to bound states):
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Section 11.5: The Adiabatic Approximation

Classical analog: a pendulum with zero 
friction oscillating in a plane. If abruptly 
you move the box, the pendulum will have a 
complicated motion. 

But if you “very slowly” rotate the 
box, the plane of oscillation will 
slowly rotate as well. 

A very slow change in the boundary conditions of a problem 
defines an “adiabatic” process.

Often there are two characteristic times competing. One is 
internal,Ti, like the period of the pendulum that depends on 
gravity “g” and length of string “L”. The other one is external, 
Te, related in this example to the speed of rotation of the box. 
Adiabatic means Te >> Ti .  
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In QM, this is often used in describing oscillations of molecules. Like we 
did for the H2

+ ion: we fixed R, the distance between hydrogens, and 
solved the electron problem. The results depend on R of course. Then, 
by making R=R(t) we could have found the frequencies of oscillations of 
the atoms, precursor of finding “phonons” in crystals. 

Solving the electronic problem 
first, and then addressing the 
oscillations in a fixed electronic 
cloud is called the Born-
Oppenheimer approximation.

R

R(t)

More specifically, if the electron was 
initially in the ground state, it remains in 
the ground state that smoothly changes 
its shape as R changes slowly.  This uses
the Adiabatic Approximation !

at R fixed

Same type of wave function 

simply at new R (t)
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In general: if the particle is initially at eigenstate 
n-th of initial H, then in an adiabatic problem it 
remains in the eigenstate nth of the final H.

Slow 

Now consider an 
abrupt switch 
from a to 2a. 

The initial wave 
function is neither 
even nor odd, thus it 
will have a nonzero 
overlap with all the 
eigenstates!

Moreover, after the wall 
abruptly is moved to 2a, the 
energy is conserved in the 
new problem. The electron 
will never be 100% in the 
ground state. 

Definitely the wave function y(t) will 
NOT be 

Energy not 
conserved 
during 
evolution 
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The adiabatic theorem is complicated to prove but we 
will try. Specifically it says that in an adiabatic process 
the eigenstates – assume a discrete energy spectrum so 
that you can follow each one - evolve as:

For example, consider the 
square well again, with a wall 
moving with constant velocity v.

In addition, there are two phase factors, according to the theorem: 
the dynamical and the geometrical (related to the Berry phase).


