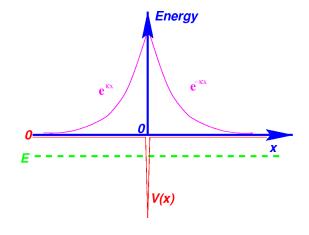
Example 3.4 book:

Consider a particle located in the (only) bound state of the δ -function potential. The wave function is:

$$\Psi(x,t) = \frac{\sqrt{m\alpha}}{\hbar} e^{-m\alpha|x|/\hbar^2} e^{-iEt/\hbar}$$



Typical question: what is the probability of measuring a momentum greater than $p_0 = m\alpha/\hbar^*$? We need to calculate $|c(p)|^2$ (see next page).

^{*} Can you confirm that the units are those of momentum?

Reminder of previous lecture: eigenfunction of momentum operator \hat{p} . We need an eigenfunction $f_p(x)$ such that

$$\hat{p}$$
 operator $\underbrace{\frac{\hbar}{i} \frac{d}{dx} f_p(x)}_{\text{eigenvalue}} = \underbrace{pf_p(x)}_{\text{eigenvalue}}$

Solution is very easy (but normalization is complicated):

$$f_p(x) = \frac{1}{\sqrt{2\pi\hbar}} e^{ipx/\hbar}$$

$$\Psi(x,t) = \frac{\sqrt{m\alpha}}{\hbar} e^{-m\alpha|x|/\hbar^2} e^{-iEt/\hbar}$$

Repeating: What is the probability of measuring a momentum greater than $p_0 = m\alpha/\hbar$? We need to calculate $|c(p)|^2$.

$$c(p) = \langle f_p | \Psi \rangle = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} e^{-ipx/\hbar} \Psi(x, t) dx =$$

$$= \frac{1}{\sqrt{2\pi\hbar}} \frac{\sqrt{m\alpha}}{\hbar} e^{-iEt/\hbar} \int_{-\infty}^{\infty} e^{-ipx/\hbar} e^{-m\alpha|x|/\hbar^2} dx = \sqrt{\frac{2}{\pi}} \frac{p_0^{3/2} e^{-iEt/\hbar}}{p^2 + p_0^2}$$

integral given

The final answer is:

The final answer is: Integral given. Answer must be
$$\int_{p_0}^{\infty} |c(p)|^2 dp = \frac{2}{\pi} p_0^3 \int_{p_0}^{\infty} \frac{1}{(p^2 + p_0^2)^2} dp = 0.0908$$

Just a name: c(p), which can be function of t but not x, is often called $\Phi(p,t)$, the momentum space wave function.

A similar problem could be formulated for the harmonic oscillator involving Gaussians (problem 3.11, HW8) or the infinite square well involving sines, etc., etc.

Uncertainty Principle (4 pages, prepare for impact)

The standard deviation for any operator is

$$\sigma_{A}^{2} = \langle \hat{A}^{2} \rangle - \langle \hat{A} \rangle^{2} = \langle \Psi | \hat{A}^{2} | \Psi \rangle - \langle \Psi | \langle \hat{A} \rangle \hat{A} | \Psi \rangle =$$

$$= \langle \Psi | \hat{A}^{2} - 2 \langle \hat{A} \rangle \hat{A} + \langle \hat{A} \rangle \hat{A} | \Psi \rangle = \langle \Psi | (\hat{A} - \langle \hat{A} \rangle)^{2} | \Psi \rangle$$

$$\downarrow \text{If } \Psi \text{ normalized to 1}$$
i.e. $\langle \Psi | \Psi \rangle = 1$.

For Hermitian operator this can be rewritten as:

For
$$\hat{A}$$
: $\sigma_A^2 = \langle (\hat{A} - \langle \hat{A} \rangle) \Psi | (\hat{A} - \langle \hat{A} \rangle) \Psi \rangle = \langle f | f \rangle$ where $f \equiv (\hat{A} - \langle \hat{A} \rangle) \Psi$

For
$$\hat{B}$$
: $\sigma_B^2 = \langle g|g\rangle$ $g \equiv (\hat{B} - \langle \hat{B} \rangle)\Psi$

Consider the Schwartz inequality:

$$\sigma_A^2 \sigma_B^2 = \langle f | f \rangle \langle g | g \rangle \ge |\langle f | g \rangle|^2$$

We use now the following property of complex numbers:

$$|z|^2 = [\operatorname{Re}(z)]^2 + [\operatorname{Im}(z)]^2 \ge [\operatorname{Im}(z)]^2 = \left[\frac{1}{2i}(z - z^*)\right]^2$$
Consider $z = \langle f|g\rangle$

Then
$$\sigma_A^2 \sigma_B^2 \ge \left(\frac{1}{2i} [\langle f|g \rangle - \langle g|f \rangle]\right)^2$$

Then (repeated)
$$\sigma_A^2 \sigma_B^2 \ge \left(\frac{1}{2i} [\langle f|g \rangle - \langle g|f \rangle]\right)^2$$

A is Hermitian

$$\begin{split} \langle f|g\rangle &= \langle (\hat{A} - \langle \hat{A} \rangle) \Psi | (\hat{B} - \langle \hat{B} \rangle) \Psi \rangle = \langle \Psi | (\hat{A} - \langle \hat{A} \rangle) (\hat{B} - \langle \hat{B} \rangle) \Psi \rangle \\ &= \langle \Psi | (\hat{A} \hat{B} - \hat{A} \langle \hat{B} \rangle - \hat{B} \langle \hat{A} \rangle + \langle \hat{A} \rangle \langle \hat{B} \rangle) \Psi \rangle \\ &= \langle \Psi | \hat{A} \hat{B} \Psi \rangle - \langle \hat{B} \rangle \langle \Psi | \hat{A} \Psi \rangle - \langle \hat{A} \rangle \langle \Psi | \hat{B} \Psi \rangle + \langle \hat{A} \rangle \langle \hat{B} \rangle \langle \Psi | \Psi \rangle \\ &= \langle \hat{A} \hat{B} \rangle - \langle \hat{B} \rangle \langle \hat{A} \rangle - \langle \hat{A} \rangle \langle \hat{B} \rangle + \langle \hat{A} \rangle \langle \hat{B} \rangle \\ &= \langle \hat{A} \hat{B} \rangle - \langle \hat{A} \rangle \langle \hat{B} \rangle. \quad \text{Make sure you understand every step} \end{split}$$

$$\langle g|f\rangle = \langle \hat{B}\hat{A}\rangle - \langle \hat{A}\rangle \langle \hat{B}\rangle$$
 Left as exercise

In summary:
$$\langle f|g
angle - \langle g|f
angle = \langle \hat{A}\hat{B}
angle - \langle \hat{B}\hat{A}
angle = \langle [\hat{A},\hat{B}]
angle$$

$$[\hat{A},\hat{B}] \equiv \hat{A}\hat{B} - \hat{B}\hat{A}$$

Generalized uncertainty principle:

$$\sigma_A^2 \sigma_B^2 \geq \left(\frac{1}{2i} \langle [\hat{A}, \, \hat{B}] \rangle \right)^2$$
 Assumes <..> is in a normalized to 1 state, and both

state, and both operators Hermitian.

As special case, if $\hat{A} = \hat{x}$ and $\hat{B} = \hat{p}$, then $[\hat{x}, \hat{p}] = i\hbar$

$$\sigma_x^2 \sigma_p^2 \ge \left(\frac{1}{2i}i\hbar\right)^2 = \left(\frac{\hbar}{2}\right)^2 \qquad \sigma_x \sigma_p \ge \frac{\hbar}{2}$$

This was the last item of Ch. 3 for us