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Example 7.2:

Consider now the attractive delta function. Here we 
also know the exact result from QM 411: 

Here we will use again the Gaussian trial wave function. 
We know already that this is not the exact ground state.  

The normalization is independent 
of the Hamiltonian, thus same as 
Example 7.1:

<T> is the same:
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The only difference between Examples 7.1 and 7.2 arises from <V>:

Adding kinetic and potential:

Optimizing b:

we arrive to                               while exact is

Not perfect but close!

Note: If variational state is known to be orthogonal to ground state (e.g. 
even vs odd), then the upper bound found is for the first excited state 
(see Problem 7.4).
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Example 7.3:
As a wave function you can use anything, 
including a function with discontinuous first 
derivatives:

Consider as potential the infinite 
square well between 0 and a.

The challenge is how to handle <T> that 
contains a second derivative!
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The derivative of a step function 
is a Dirac delta. Number in front 
is the jump:

The exact result is:
Variational theorem 
holds because
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7.2 The Ground State of Helium
e1 e2

This problem cannot be solved exactly because 
of the e-e repulsion. However, we know the 
ground state energy experimentally:

Nucleus 

e1 e2

If we neglect the e-e repulsion, the problem can be solved but 
energy is 8x(13.6 eV) = -109 eV, far from the exact result: 
Qualitatively ok, quantitatively not enough.
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To improve on the discrepancy between -109 eV and -78.975 eV, 
we will use a variational method, employing the same wave function 
y0(r1,r2) that solves the problem exactly when e-e neglected. 

Note we have NO variational 
parameter here, yet it is still a 

variational problem. We will still 
get an upper bound on the energy.

with 

where 

The double integral 
can be done, see 
book. The result is: 
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Great quantitative improvement! 

Note that -109 eV was the result of neglecting e-e, i.e. a different 
Hamiltonian. Not surprising -109 eV is below -79 eV. Note also that 
when the complete problem --- with e-e repulsion included --- is 
treated variationally, then the result is ABOVE -79 eV as it must.

We can do even better, by introducing a variational parameter Z 
that mimics “screening” effects: each electron should see a 
reduced nuclear charge because sometimes the other electron is 
in the way. Then, let us now try:

and optimize Z after calculating <H>. Note we never “play” with 
H, that is fixed. We “play” with the trial wavefunction.
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How do we do the calculation of <H>? First rewrite exactly the 
Hamiltonian, without modifying it:

The unperturbed wave functions 
are those of the H atom:

Then:

ZZ3

No Z dependence in Vee, 
but wave function has Z. 
Repeat calculation and 
you get -5ZE1/4.

We finally find:
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Now we must optimize with respect to Z:

The optimal Z being less than 2 
makes sense. It is like an effective 
“screened” charge: one electron 
often sees the nucleus and the 
other electron in between. 

The final answer is then:

In summary, once the full H is 
considered then our approx. 
must be an upper bound:

Experimental


