Example 7.2:

Consider now the attractive delta function. Here we
also know the exact result from QM 411: E, = —ma?/2h*
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Here we will use again the Gaussian trial wave function.
We know already that this is not the exact ground state.
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The only difference between Examples 7.1 and 7.2 arises from <V>:
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Not perfect but closel

Note: If variational state is known to be orthogonal to ground state (eg.
even vs odd), then the upper bound found is for the first excited state
(see Problem 7.4).



. Asawave function you can use anything,
Examp’e 7.3: including a function with discontinuous first
derivatives:

Consider as potential the infinite

square well between 0 and a. v}
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The challenge is how to handle <T> that
contains a second derivativel
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The derivative of a step function
is a Dirac delta. Number in front
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The exact result is:
Variational theorem
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Egs =m-h /2’"‘72 holds because 12 > 7?2



7.2 The Ground State of Helium
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This problem cannot be solved exactly because
of the e-e repulsion. However, we know the e
ground state energy experimentally:

€1
Eos = —78.975 eV (experimental) +26

Nucleus

If we neglect the e-e repulsion, the problem can be solved but
energy is 8x(13.6 eV) = -109 eV, far from the exact result:
Qualitatively ok, quantitatively not enough.
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To improve on the discrepancy between -109 eV and -78.975 eV,
we will use a variational method, employing the same wave function
wo(ry,r,) that solves the problem exactly when e-e neglected.

8 ot 4rai/a Note we have NO variational
Vo(r1. r2) = Yioo(r)yioo(ra) = — ze =7 parameter here, yet it is still a
variational problem. We will still

& get an upper bound on the energy.
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The double integral

can be done, see 2 5
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(HYy =—109eV +34eV=-75¢eV

Great quantitative improvement!

Note that -109 eV was the result of neglecting e-e, i.e. a different
Hamiltonian. Not surprising -109 eV is below -79 eV. Note also that
when the complete problem --- with e-e repulsion included --- is
treated variationally, then the result is ABOVE -79 eV as it must.

We can do even better, by introducing a variational parameter Z
that mimics "screening” effects: each electron should see a
reduced nuclear charge because sometimes the other electron is
in the way. Then, let us now try:
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and optimize Z after calculating <H>. Note we never "play” with
H, that is fixed. We "play” with the trial wavefunction.



How do we do the calculation of <H>? First rewrite exactly the
Hamiltonian, without modifying it:
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No Z dependence in Vee,
but wave function has Z.
Repeat calculation and

The unperturbed wave functions
are those of the H atom:

We finally find:

(H) = [222 —4Z(Z —-2) — (5/4)2] E| =[-22%*+ 7/8Z1E;| 7" get -5ZE,/4.




Now we must optimize with respect to Z:

d
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The optimal Z being less than 2
27 makes sense. It is like an effective
Z=1=16 “screened" charge: one electron
often sees the nucleus and the

other electron in between.
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The final answer is then: (H) = 5 (5) Ey=-77.5¢eV
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In summary, once the full H is —75 eV —_"
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considered then our approx. _775 eV et = H_za? A

must be an upper bound:
—78.975 eV Experimental




