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Because we know the solution in the range 0<x<a, then 
we know it everywhere, according to Bloch’s theorem: 

In the Dirac comb, in between the delta functions the 
potential is V(x)=0, and the solutions are simple:

This gives the wave function in the “right” cell, if I have 
the wave function in the “left” cell. Sometimes I have the 
wave function in the “right” cell, and I want the wave 
function in the “left cell”: y(x) = e-iKay(x+a). 
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To fix A and B, as with the delta function potential in 
QM411, we will use: 

(1) the wave function has to be continuous at x=0. 
(2) the first derivative cannot be continuous for a delta 

function, but its discontinuity we know how to calculate. 

Reminder: see page 84 of the book:

+ a d (x)
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(1) Continuity at x=0 requires that wave function

at x=0, i.e. y(x=0) = B, be equal to 

at x=0, which is y(x=0) =

Thus, the first equation is:
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(2) The derivative of each of the two wave functions can be 
easily calculated and then specialized for x=0.

So we have the two equations for A and B, easy to solve.
There is no “independent” term i.e. each term has either 
A or B in front. Then a condition must be satisfied:
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Introducing:

then we arrive to:

Bounded between  
-1 and 1

Unbounded

b = 10 as 
example

Range of 
cos(Ka).
Ka=2pn/N is 
so dense it 
forms a 
continuum.

Allowed solutions

Gaps and bands typically of width order eV
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Repeating: Ka=2pn/N 
is so dense it forms 
almost a continuum.

N states

N states

N states
(degenerate by 
pairs see HW18 
problem, so N/2 
actual lines at 
large N)

q=1 (metal) -> half-band 
occupied (2e/state)

q=2 (insulator)-> first band 
fully occupied (2e/state)

q=3 (metal)-> second band 
half occupied (2e/state)

q=4+e (semiconductor)-> 
second band fully occupied + 
a few more electrons (2e/state)
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5.4 Quantum Statistical Mechanics

In this section, for the first time, we will introduce 
the concept of temperature T in QM.

At T=0, the system is in the 
state that minimizes the 
energy. At nonzero T, excited 
states start participating.  If 
the system is immersed in a 
large “heat bath” its energy is 
raised, thus excited states are 
populated because there is 
thermal energy to excite the 
system. 
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Thermodynamics is a probabilistic theory, even 
classically. We have N (large) number of particles and it 
is impossible to keep track of their individual movement.

In thermodynamics we need to 
address questions such as: what is 
the probability that one particle 
has a particular energy Ej?

Ground state of 
q=3 is all 
occupied below, 
all empty above.

kBT
With enough T, which 
translates into enough 
energy, I can populate 
excited states.

Again, this is a probabilistic 
theory even in a perfect 
classical gas. It is probabilistic 
because N is huge. 
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Intuitively, because of the contact with the large “heat 
bath? at constant T, the energy of the system is now 
larger than the ground state and it is also constant.

But this “excited” state is not frozen: particles constantly 
move. When on particle moves up in energy, another moves 
down; when a molecule starts rotating, another stops; etc. 
At the microscopic level there is plenty of activity.

The fundamental assumption of statistical mechanics is 
that in thermal equilibrium every combination of energy 
(i.e. every state) of the N particles that produces the 
same total energy has the same probability. 

QM here will only affect the results by the way in 
which we count distinct states. For instance classical 
particles vs fermions will lead to a different number 
of excited states with energy say Ej.


