5.4.1 An Example (from book)

Once again we will consider the infinite square well in 1D.

As opposed to $\mathrm{N} \sim 10^{23}$ particles we will have just 3 , to do all the proper counting in detail.
$x=0$ at left wall of box.
We assume they are not interacting i.e.

$$
E=E_{A}+E_{B}+E_{C}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(n_{A}^{2}+n_{B}^{2}+n_{C}^{2}\right)
$$

The quantum numbers n_{A}, n_{B}, n_{C}, are positive integers.

We will assume the total energy is $E=363\left(\pi^{2} \hbar^{2} / 2 m a^{2}\right)$
This number is larger than the ground state energy because we are in contact with a "bath" at a constant temperature T that provides energy.

Also the weird number 363 is chosen so that there are many possible combinations of integers such that

$$
n_{A}^{2}+n_{B}^{2}+n_{C}^{2}=363
$$

In fact, there are 13 combinations of three integers that lead to 363:

$$
\left(n_{A}, n_{B}, n_{C}\right)
$$

For classical particles they are all different configurations:

1 time
3 times
3 times
6 times

$(5,7,17),(5,17,7),(7,5,17),(7,17,5),(17,5,7),(17,7,5)$
Total 13

Each individual state of the square well will have an occupation number N_{n}. A configuration is the collection of all occupation numbers of the 3-particle state.

For ($11,11,11$) the configuration is ($0,0,0,0,0,0,0,0,0,0,3,0,0,0,0, \ldots)$

$$
N_{11}=3, \text { the rest are } 0
$$

For $(13,13.5),(13,5,13),(5,13,13)$ the common configuration is ($0,0,0,0,1,0,0,0,0,0,0,0,2,0,0, \ldots .$.
For (1, 1, 19), (1.19.1). (19, 1.1) the configuration is $(\underset{\sim}{2}, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0 \ldots)$

For $(5,7,17),(5,17,7),(7,5,17),(7,17,5),(17,5,7),(17,7,5)$ is $(0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0, \ldots) \longleftarrow \underset{N_{7}=1}{\substack{N_{17}=1}} \begin{aligned} & \text { Most probable } \\ & \text { configuration: } \\ & 6 \text { out of } 13\end{aligned}$

The most probable configuration will be crucial ...

Typical question: selecting a particle at random out of the 3 , what is the probably P_{n} that the chosen one will be in a quantum state " n "?
(11, 11, 11).
$(13,13,5),(13,5,13),(5,13,13)$.
(1, 1, 19), (1. 19.1). (19, 1.1).
$(5,7,17),(5,17,7),(7,5,17),(7,17,5),(17,5,7),(17,7,5)$

For example, for states $n=2,3,4,6,8,9,10,12,14,15,16,18,20,21, \ldots$ the probability is ZERO.

Consider $n=1$. What is the probability P_{1} ? It appears only in the third line i.e. factor $3 / 13$. In each of the three, the chance is $2 / 3$. Then $3 / 13 \times 2 / 3=2 / 13$.

Consider $n=5$. What is the probability P_{5} ? It appears in the second line, factor $3 / 13$, and fourth line, factor 6/13. In the second line, each case has chance $1 / 3$. In the fourth line, each case chance $1 / 3$ also. Then answer is $3 / 13 \times 1 / 3+6 / 13 \times 1 / 3=3 / 13$.

```
        (11, 11, 11).
    (13,13,5), (13,5,13), (5, 13, 13).
    (1, 1, 19), (1. 19.1), (19, 1.1).
(5,7,17),(5,17,7),(7,5,17),(7,17,5).(17,5,7),(17,7,5)
```

Consider $n=7$. What is P_{7} ? It appears only in the fourth line i.e. factor $6 / 13$. In each of the six, the chance is $1 / 3$. Then $6 / 13 \times 1 / 3=2 / 13$.

Consider $n=11$. What is P_{11} ? It appears in the first line only i.e. factor $1 / 13$. If I am in the first line the chance of a particle in $n=11$ is 1 . Then answer is $1 / 13 \times 1=1 / 13$.

Consider $n=13$. What is P_{13} ? It appears in the second line only i.e. factor $3 / 13$. If I am in the second line the chance of a particle in $n=13$ is $2 / 3$. Then answer is $3 / 13 \times 2 / 3=2 / 13$.

```
        (11,11,11).
        (13, 13, 5), (13, 5, 13). (5, 13, 13).
        (1, 1, 19), (1. 19.1). (19, 1.1).
(5,7,17),(5,17,7),(7,5,17):(7, 17,5),(17,5,7),(17,7,5)
```

Consider $n=17$. What is P_{17} ? It appears only in the fourth line i.e. factor $6 / 13$. In each of the six, the chance is $1 / 3$. Then $6 / 13 \times 1 / 3=2 / 13$.

Consider $n=19$. What is P_{19} ? It appears in the third line only i.e. factor $3 / 13$. If I am in the third line the chance of a particle in $n=19$ is $1 / 3$. Then answer is $3 / 13 \times 1 / 3=1 / 13$.

End of torture

One way to check that all is fine is to add the probabilities. They have to add to 1:
$P_{1}+P_{5}+P_{7}+P_{11}+P_{13}+P_{17}+P_{19}=\frac{2}{13}+\frac{3}{13}+\frac{2}{13}+\frac{1}{13}+\frac{2}{13}+\frac{2}{13}+\frac{1}{13}=1$

For identical fermions all is much easier!
$\left(n_{A}, n_{B}, n_{C}\right)$
(11, 11, 11).
$(13,13,5),(13,5,13) .(5,13,13)$.
(1, 1, 19), (1. 19. 1). (19, 1. 1).
$(5,7,17),(5,17,7),(7,5,17),(7,17,5),(17,5,7),(17,7,5)$
out out out
1 time
$P_{5}=1 \times 1 / 3=1 / 3, \quad P_{7}=1 \times 1 / 3=1 / 3, \quad P_{17}=1 \times 1 / 3=1 / 3$
Total 1
$P_{5}+P_{7}+P_{17}=1$

For identical bosons not too hard:

$$
\left(n_{A}, n_{B}, n_{C}\right)
$$

(11, 11, 11).
$(13,13,5),(13,5,13),(5,13,13)$.
(1, 1, 19), (1. 19. 1). (19, 1. 1).
$(5,7,17),(5,17,7),(7,5,17),(7,17,5),(17,5,7),(17,7,5)$

$$
\begin{array}{ll}
P_{1}=1 / 4 \times 2 / 3=2 / 12, & P_{5}=1 / 4 \times 1 / 3+1 / 4 \times 1 / 3=2 / 12, \\
P_{7}=1 / 4 \times 1 / 3=1 / 12, & P_{11}=1 / 4 \times 1=1 / 4=3 / 12, \\
P_{13}=1 / 4 \times 2 / 3=2 / 12, & P_{17}=1 / 4 \times 1 / 3=1 / 12, \\
P_{19}=1 / 4 \times 1 / 3=1 / 12 &
\end{array}
$$

$$
\begin{aligned}
& P_{1}+P_{5}+P_{7}+P_{11}+P_{13}+P_{17}+P_{19}= \\
& 2 / 12+2 / 12+1 / 12+3 / 12+2 / 12+1 / 12+1 / 12=1
\end{aligned}
$$

Amazingly, for many many particles N, the math will simplify because the most probable configuration will totally dominate over the rest. For example, for classical particles the last configuration $(5,7,17)$... would be the only one to consider.

5.4.2 The General Case

Consider an arbitrary potential $V(x)$ and assume we know the properties of the one particle states i.e. its energies E_{1}, $E_{2}, \ldots, E_{n}, \ldots$ and the degeneracy of each energy $d_{1}, d_{2}, \ldots, d_{n}, \ldots$

Suppose a fixed number of particles N.
 In the previous example $N=3$.

Suppose now I want to investigate a particular configuration ($\left.N_{1}, N_{2}, \ldots, N_{n}, \ldots\right)$ such that the $\operatorname{sum} N_{1}+N_{2}+\ldots+N_{n} \ldots=N$.

Given a set of occupations $\left(N_{1}, N_{2}, \ldots, N_{n}, \ldots\right)$ we want to know in how many ways $Q\left(N_{1}, N_{2}, \ldots, N_{n}, \ldots\right)$ we can get that set, such that the sum $N_{1}+N_{2}+\ldots+N_{n} \ldots=N$.

Distinguishable particles first:

In the last lecture ($0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0, \ldots)$ appeared 5 times thus $Q(0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0, \ldots)=6$ The configuration ($0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0 . .$.) appeared only 1 time thus $Q=(0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0 .)=$.1 .
$(11,11,11)$
$(13,13,5),(13,5,13),(5,13,13)$
$(1,1,19),(1,19,1),(19,1,1)$
$(5,7,17),(5,17,7),(7,5,17),(7,17,5),(17,5,7),(17,7,5)$

We aim to get a generic formula for the "6" and the "1" in the example above.

Here I will give you the results without derivation, and confirm the formulas using the example of last lecture. For full derivation, read book. For distinguishable particles the answer is:

$$
Q\left(N_{1}, N_{2}, N_{3}, \ldots\right)=N!\prod_{n=1}^{\infty} \frac{d_{n}^{N_{n}}}{N_{n}!}
$$

In the example of last lecture, the degeneracy d_{n} was always 1 , so that does not count since $1^{\mathrm{Nn}}=1$. Also $N!=3.2 .1=6$ because we had 3 particles.

For the configuration ($0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0, \ldots$) the eq. says $Q(0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0 . .)=.3!/ 11111!=6$ (correct).

For the configuration ($0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0 . .$.$) the eq.$ says $Q(0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0 . .)=.3!/ 3!=1$ (correct \dagger.

For identical fermions it is easier. The answer is:

$$
Q\left(N_{1}, N_{2}, N_{3}, \ldots\right)=\prod_{n=1}^{\infty} \frac{d_{n}!}{N_{n}!\left(d_{n}-N_{n}\right)!}
$$

For the configuration ($0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0, \ldots$) the eq. says $Q(0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0, .)=$. 1!!1!!/1!(1-1)!!!(1-1)!1!(1-1)! = 1 (correct for fermions).

For the configuration ($0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0, \ldots)$ the eq. says $Q(0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0 . .)=$.0 (correct for fermions) because I cannot place 3 particles in the same state.

For identical bosons the answer is:

$$
Q\left(N_{1}, N_{2}, N_{3} \ldots\right)=\prod_{n=1}^{\infty} \frac{\left(N_{n}+d_{n}-1\right)!}{N_{n}!\left(d_{n}-1\right)!}
$$

For the configuration ($0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0, \ldots$) the eq. says $Q(0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0 . .)=$. (1+1-1)!(1+1-1)!!(1+1-1)!/[1!(1-1)!1!(1-1)!1!(1-1)!! = 1 (correct for bosons).

For the configuration ($0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0 . \ldots)$ the eq. says $Q(0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0 . .)=.(3+1-1)!/ 3!(1-1)!=1$ (correct for bosons).

