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5.4.1 An Example (from book)

Once again we will consider the 
infinite square well in 1D.

As opposed to N~1023 particles we 
will have just 3, to do all the proper 
counting in detail.  

We assume they are not interacting i.e.  

The quantum numbers nA, nB, nC, are positive integers. 
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We will assume the total energy is  

This number is larger than the ground state energy 
because we are in contact with a “bath” at a constant 
temperature T that provides energy. 

Also the weird number 363 is chosen so that there are 
many possible combinations of integers such that  
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(nA, nB, nC) 

In fact, there are 13 combinations of 
three integers that lead to 363:

For classical 
particles they 
are all 
different
configurations:

1 time
3 times
3 times
6 times

Total 13
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For                       the configuration is  
(0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,…) 

For                                                     the common 
configuration is  (0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,…) 

For                                                the configuration  
is (2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0…) 

For                                                 
is  (0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0…) 

Each individual state of the square well will have an 
occupation number Nn . A configuration is the collection 
of all occupation numbers of the 3-particle state.

N11 = 3, the rest are 0

N5 = 1 N13 = 2

N1 = 2 N19 = 1

N17 = 1N7 = 1N5 = 1

Most probable

configuration: 

6 out of 13

The most probable configuration will be crucial …
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Typical question: selecting a particle 
at random out of the 3, what is the 
probably Pn that the chosen one 
will be in a quantum state “n”?

For example, for states n=2,3,4,6,8,9,10,12,14,15,16,18,20,21,… 

the probability is ZERO.

Consider n=1. What is the probability P1? It appears only 
in the third line i.e. factor 3/13. In each of the three, the 
chance is 2/3. Then 3/13 x 2/3 = 2/13.

Consider n=5. What is the probability P5? It appears in 
the second line, factor 3/13, and fourth line, factor 6/13. 
In the second line, each case has chance 1/3. In the 
fourth line, each case chance 1/3 also. Then answer is 
3/13x1/3 + 6/13x1/3 = 3/13.



6

Consider n=7. What is P7? It appears only in the fourth 
line i.e. factor 6/13. In each of the six, the chance is 1/3. 
Then 6/13 x 1/3 = 2/13.

Consider n=11. What is P11? It appears in the first line only 
i.e. factor 1/13. If I am in the first line the chance of a 
particle in n=11 is 1. Then answer is 1/13x1= 1/13.

Consider n=13. What is P13? It appears in the second line 
only i.e. factor 3/13. If I am in the second line the chance 
of a particle in n=13 is 2/3. Then answer is 3/13x2/3= 2/13.
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Consider n=17. What is P17? It appears only in the fourth 
line i.e. factor 6/13. In each of the six, the chance is 1/3. 
Then 6/13 x 1/3 = 2/13.

Consider n=19. What is P19? It appears in the third line 
only i.e. factor 3/13. If I am in the third line the chance of 
a particle in n=19 is 1/3. Then answer is 3/13x1/3 = 1/13.

End of torture ….
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One way to check that all is fine is to add the 
probabilities. They have to add to 1:

For identical fermions all is much easier!

(nA, nB, nC) 

out
out
out
1 time

Total 1
P5=1x1/3=1/3,   P7=1x1/3=1/3,   P17=1x1/3=1/3

P5 + P7 + P17 = 1
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For identical bosons not too hard:

(nA, nB, nC) 

1 time
1 time
1 time
1 time

Total 4P1    =  1/4x2/3=2/12,   P5=1/4x1/3 + 1/4x1/3=2/12,   
P7   =  1/4x1/3 =1/12,    P11=1/4x1=1/4=3/12, 
P13 =  1/4x2/3 =2/12,   P17=1/4x1/3=1/12,   
P19 =  1/4x1/3 =1/12 

P1 + P5 + P7  + P11 + P13 + P17 + P19 = 
2/12+2/12+ 1/12+3/12+2/12+1/12+1/12 = 1 
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Amazingly, for many many particles N, the math will 
simplify because the most probable configuration 
will totally dominate over the rest. For example, for 
classical particles the last configuration (5,7,17) … 
would be the only one to consider.
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5.4.2 The General Case

Consider an arbitrary potential V(x) and 
assume we know the properties of the 
one particle states i.e. its energies E1, 
E2, …, En, … and the degeneracy of each 
energy d1, d2 , …, dn, …

E1, d1

E2, d2

E3, d3

En, dn

…
…

Suppose a fixed number of particles N. 
In the previous example N=3.

Suppose now I want to investigate a particular 
configuration (N1, N2, …, Nn, … ) such that the 
sum N1 + N2 + … + Nn … = N. 
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Given a set of occupations (N1, N2, …, Nn, … ) we want 
to know in how many ways Q(N1, N2, …, Nn, … ) we can 
get that set, such that the sum N1 + N2 + … + Nn … = N. 

In the last lecture (0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0…) 
appeared 5 times thus Q(0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0…)=6 
The configuration (0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0…) appeared 
only 1 time thus Q=(0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0…)=1. 

We aim to get a generic formula for the “6” and the “1” 
in the example above. 

Distinguishable particles first:
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Here I will give you the results without derivation, and 
confirm the formulas using the example of last lecture. For full 

derivation, read book. For distinguishable particles the answer is:

For the configuration (0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0…) the eq. 
says Q(0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0…) = 3!/1!1!1! = 6 (correct).

In the example of last lecture, the degeneracy dn was 
always 1, so that does not count since 1Nn = 1. Also 
N!=3.2.1=6 because we had 3 particles. 

For the configuration (0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0…) the eq. 
says Q(0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0…)= 3!/3! = 1 (correct).
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For identical fermions it is easier. The answer is:

For the configuration (0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0…) the eq. 
says Q(0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0…) = 
1!1!1!/1!(1-1)!1!(1-1)!1!(1-1)! = 1 (correct for fermions).

For the configuration (0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0…) the eq. 
says Q (0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0…) = 0 (correct for 
fermions) because I cannot place 3 particles in the same state. 
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For identical bosons the answer is:

For the configuration (0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0…) the eq. 
says Q(0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0…) = 
(1+1-1)!(1+1-1)!(1+1-1)!/[1!(1-1)!1!(1-1)!1!(1-1)!] = 1 (correct for bosons).

For the configuration (0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0…) the eq. 
says Q(0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0…) = (3+1-1)!/3!(1-1)! = 1 
(correct for bosons). 


