5.4.3 The Most Probable Configuration

In thermal equilibrium, we are searching for the most probable configuration ($N_{1}, N_{2}, \ldots, N_{n}, \ldots$) i.e. the one that can be achieved in the largest number of ways i.e. such that $Q\left(N_{1}, N_{2}, \ldots, N_{n}, \ldots\right)$ is the largest.

The catch is that there are constraints:

$$
\sum_{n=1}^{\infty} N_{n}=N \quad \sum_{n=1}^{\infty} N_{n} E_{n}=E
$$

Maximizations with constraints are handled via a method called Lagrange Multipliers:

The general problem is that of maximizing a function of many variables $F\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ subject to constraints such as

$$
f_{1}\left(x_{1}, x_{2}, x_{3}, \ldots\right)=0, f_{2}\left(x_{1}, x_{2}, x_{3}, \ldots\right)=0, \text { etc. }
$$

The address this problem we introduce a bigger function with Lagrange multipliers $G\left(x_{1}, x_{2}, x_{3} \ldots, \lambda_{1}, \lambda_{2} \ldots\right) \equiv F+\lambda_{1} f_{1}+\lambda_{2} f_{2}+\cdots$

And request: $\quad \frac{\partial G}{\partial x_{n}}=0 \quad \frac{\partial G}{\partial \lambda_{n}}=0$
Better to work with $\ln Q$ instead of Q since they have maxima at same point, but $\ln Q$ is easier

$$
G \equiv \ln (Q)+\alpha\left[N-\sum_{n=1}^{\infty} N_{n}\right]+\beta\left[E-\sum_{n=1}^{\infty} N_{n} E_{n}\right]
$$

Use Sterling formula: $\quad \ln (z!) \approx z \ln (z)-z \quad$ for $z \gg 1$

Again, only results will be given here, for the most probable configuration. For distinguishable particles:

$$
\ln (Q)=\ln (N!)+\sum^{\infty}\left[N_{n} \ln \left(d_{n}\right)-\ln \left(N_{n}!\right)\right] \quad N_{n}=d_{n} e^{-\left(\alpha+\beta E_{n}\right)}
$$

For identical fermions:

$$
\ln (Q)=\sum_{n=1}^{\infty}\left\{\ln \left(d_{n}!\right)-\ln \left(N_{n}!\right)-\ln \left[\left(d_{n}-N_{n}\right)!\right]\right\}
$$

$$
N_{n}=\frac{d_{n}}{e^{\left(\alpha+\beta E_{n}\right)}+1}
$$

For identical bosons:

$$
\begin{aligned}
& \ln (Q)=\sum_{n=1}^{\infty}\left\{\ln \left[\left(N_{n}+d_{n}-1\right)!\right]-\ln \left(N_{n}!\right)-\ln \left[\left(d_{n}-1\right)!\right]\right\} \\
& N_{n}=\frac{d_{n}-1}{e^{\left(\alpha+\beta E_{n}\right)}-1}
\end{aligned}
$$

5.4.4 Physical Significance of α and β.

Thus far, α and β are merely Lagrange multipliers, but they have an important physical meaning.

To understand the meaning, we will use the example of the ideal gas employing a 3D infinite square well.

Degeneracy: all states in a thin layer have the same energy.

$$
\mathbf{k}=\left(\frac{\pi n_{x}}{l_{x}}, \frac{\pi n_{y}}{l_{y}}, \frac{\pi n_{z}}{l_{z}}\right)
$$

Vol of thin
layer, dk

$$
d_{k}=\frac{1}{8} \frac{4 \pi k^{2} d k}{\left(\pi^{3} / V\right)}=\frac{V}{2 \pi^{2}} k^{2} d k
$$

The first constraint is:
For distinguishable particles:

$$
\begin{gathered}
\sum_{n=1}^{\infty} N_{n}=N \\
N_{n}=d_{n} e^{-\left(\alpha+\beta E_{n}\right.} \frac{1}{8} \frac{4 \pi k^{2} d k}{\left(\pi^{3} / V\right)}=\frac{V}{2 \pi^{2}} k^{2} d k \\
N=\frac{V}{2 \pi^{2}} e^{-\alpha} \int_{0}^{\infty} e^{-\beta \hbar^{2} k^{2} / 2 m} k^{2} d k=V e^{-\alpha}\left(\frac{m}{2 \pi \beta \hbar^{2}}\right)^{3 / 2}
\end{gathered}
$$

Rearranging numbers:

$$
e^{-\alpha}=\frac{N}{V}\left(\frac{2 \pi \beta \hbar^{2}}{m}\right)^{3 / 2}
$$

The second constraint is:

$$
\begin{aligned}
\sum_{n=1}^{\infty} N_{n} E_{n} & =E \\
E_{k} & =\frac{\hbar^{2}}{2 m} k^{2}
\end{aligned}
$$

Again, for distinguishable particles:

$$
\begin{gathered}
N_{n}=d_{n} e^{-\left(\alpha+\beta E_{n}\right.} E_{k}=\frac{\hbar^{2}}{2 m} k^{2} \\
d_{k}=\frac{1}{8} \frac{4 \pi k^{2} d k}{\left(\pi^{3} / V\right)}=\frac{V}{2 \pi^{2}} k^{2} d k
\end{gathered}
$$

$$
\begin{aligned}
& \qquad \begin{array}{ll}
E=\frac{V}{2 \pi^{2}} e^{-\alpha} \frac{\hbar^{2}}{2 m} \int_{0}^{\infty} e^{-\beta \hbar^{2} k^{2} / 2 m} k^{4} d k=\frac{3 V}{2 \beta} e^{-\alpha}\left(\frac{m}{2 \pi \beta \hbar^{2}}\right)^{3 / 2} \\
& e^{-\alpha}=\frac{N}{V}\left(\frac{2 \pi \beta \hbar^{2}}{m}\right)^{3 / 2}
\end{array} \\
& \text { Very simple equation }
\end{aligned}
$$ arises:

$$
E=\frac{3 N}{2 \beta} \quad \text { vs } \quad \frac{E}{N}=\frac{3}{2} k_{B} T
$$

$$
\beta=\frac{1}{k_{B} T}
$$

Instead of α, we will introduce a quantity called the chemical potential via a definition:

$$
\mu(T) \equiv-\alpha k_{B} T
$$

Thus, $\alpha=-\mu \beta$ which simplifies the math.

$$
N_{n}=d_{n} e^{-\left(\alpha+\beta E_{n}\right)} \longrightarrow \frac{N_{n}}{d_{n}}=e^{-\left(-\mu \beta+\beta E_{n}\right)}=e^{-(\varepsilon-\mu) \beta}=n(\epsilon)
$$

Most probable number of particles in a (one-particle) state with energy ε :

$$
n(\epsilon)= \begin{cases}e^{-(\epsilon-\mu) / k_{B} T} & \text { MAXWELL-BOLTZMANN } \\ \frac{1}{e^{(\epsilon-\mu) / k_{B} T}+1} & \text { FERMI-DIRAC } \\ \frac{1}{e^{(\epsilon-\mu) / k_{B} T}-1} & \text { BOSE-EINSTEIN }\end{cases}
$$

Here, we will only discuss the case of fermions where both the temperature and the chemical potential can be easily visualized. For classical and bosonic particles, T is the same as usual while μ is somewhat related to how many particles you have. μ is crucial in chemical reactions, where number of particles is not conserved.

Consider fermions: as $T \rightarrow 0$
$e^{(\epsilon-\mu) / k_{B} T} \rightarrow \begin{cases}0, & \text { if } \epsilon<\mu(0) \\ \infty, & \text { if } \epsilon>\mu(0)\end{cases}$

Then, the number of particles at a particular energy becomes:

$$
n(\epsilon) \rightarrow \begin{cases}1 . & \text { if } \epsilon<\mu(0) \\ 0, & \text { if } \epsilon>\mu(0)\end{cases}
$$

The Bose Einstein condensation and the black body radiation are left for the near future, whenever we have a chance.

We must move to Ch 6 fast ...

