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4.4: Spin of electrons (here we restart QM 412)

This topic is not part of Test 3 QM-411, 
but it will be part of Test 1 of QM-412 

A classical rigid body, like a planet, can have two kinds 
of angular momenta: (1) L, the orbital one associated 
with the center of mass, like Earth around the sun, and 
(2) S, the spin, like Earth rotating daily about an axis. 

In quantum mechanics we already discussed the orbital 
component L (related with the electron around the nucleus). 

In QM, we also have a spin S for the electron but … the 
electron to the best of our accuracy is a POINT, thus 
cannot rotate. 
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In wave packets as shown, 
the “finite size” due to 
“sigma” is the finite size of 
the wave function related 
to the probability of 
finding the particle. 

However, once we 
measure the location and 
find the particle at 
position x0,  then that 
“sigma” width is gone. 
The particle is perfectly 
at x0. At that moment 
what radius it has? 

It seems that the radius 
is smaller than 10^-18 m 
according to experiments
(see email I sent to all). 
Radius of nucleus is 
10^-15 m.
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NEW: The spin appears naturally from the Dirac 
equation that links quantum mechanics and relativity.

From Wikipedia on Dirac equation:

(The Dirac eq.) provided a theoretical justification for the 

introduction of several component wave functions in 

Pauli's phenomenological theory of spin (note: this is what we 

are doing); the wave functions in the Dirac theory are vectors 

of four complex numbers, two of which resemble the Pauli 

wavefunction in the non-relativistic limit, in contrast to the 

Schrödinger equation which described wave functions of 

only one complex value.
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It is a fact of Nature, that elementary particles such as an 
electron carry an intrinsic spin angular momentum S.

Because the electron is a point, we cannot use the
classical formulas                  or 

To describe the intrinsic spin the math has to be “analogous” 
to that of L. Let us start with the commutators:

becomes …
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First, let us switch to the Ch. 3 notation 
using an abstract Hilbert space notation:

L2 |l ml > = ћ2 l(l+1) |l ml > ; Lz |l ml > = ћ ml |l ml >

For L2 and Lz using                   or |l ml > is the SAME. 

But for the intrinsic spin the Ch. 3 notation is the 
ONLY way because there are no angles to use.

The eigenfunctions are more “abstract” …

to
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Because in lecture Nov. 20 2018 we arrived all the way to 
the eigenvalues by only using the commutators, then we 
simply repeat the operation line by line and find:

The spin of each type of particle is FIXED, not like 
the orbital angular momentum that you can change by 
emission or absorption of energy.

S2 |s ms > = ћ2 s(s+1) |s ms > ; Sz |s ms > = ћ ms |s ms >
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This is where the more practical portion 
of spin starts … our focus will be 
on the simplest case of s=1/2
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4.4.1: Spin ½ (electrons, quarks)

S2 |s ms > = ћ2 s(s+1) |s ms > ; Sz |s ms > = ћ ms |s ms >Use 

Specialize for s=1/2. Then, there are only two states, 
which in abstract form (no angles q and f!) are:

| ½ ½ > and | ½ -½ >

We call them spin “up” or     and spin “down” or     .

There is another, still abstract, way to represent 
spins up and down. It is using so-called “spinors”

It is an internal 

degree of freedom. 

The two components 

are not a 2D vector.
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We can combine the “up” and “down” linearly at will. 
So the spin could point “sideways” for instance.

If we use spinors for the states, then what do we use 
for the operators such as L2 ? Certainly we cannot use 
derivatives of angles. There are no angles!

From the two equations … 

S2 | ½  ½ > = ћ2 ½ (½ + 1) | ½  ½ >

S2 | ½ -½ > = ћ2 ½ (½ + 1) | ½ -½ >
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… it can be deduced (just apply the proposed matrix 
to the spinors) that:

From the other two equations … 

Sz | ½  ½> = ½ ћ | ½  ½>

Sz | ½ -½> = -½ ћ | ½ -½>

… it can deduced (again, apply the proposed matrix to 
the spinors) that:
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There has to be also an analog of 
the raising and lowering operators:

Example:
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Dropping the ћ/2 factor defines 
the famous Pauli matrices: 

Recalling                                      then:
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Returning to the general combination:

You have to normalize i.e. 

is the probability of measuring spin up.

is the probability of measuring spin down.
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How do you measure a spin? The same as any 
magnetic moment, like the orbital “l”. You introduce 
the particle in a magnetic field. Also there is 
something called the Stern-Gerlach experiment      
(to be explained next week):
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Returning, again!, to the general combination:

What is the probability that the spin points 
say along the positive x axis?

To answer this question, first you have to diagonalize the 
2x2 Pauli matrix “x” and find the “eigenspinors”.

Eigenvalues  + -

and

Eigenvalues  + -

For z Pauli matrix:  

1
1

1
-1

and

For x Pauli matrix:  
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1
1

1
-1

Make sure you know how to find eigenspinors!

x Pauli matrix construct 
determinant

solve determinant; 
find eigenvalues

Finally find 
eigenvectors:

… and finally 
normalize to 1.

In HW13 you have to 
repeat for the y 
Pauli matrix
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The general combination …

… can now be written as:

is the probability of measuring spin up along x.

is the probability of measuring spin down along x.
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QM 412 true new material starts here. 
Page 175 book, second edition

Let us see how the formulas work in practice. Start with:

Then,                            and  

prob. of  
if Sz measured 

=

=

prob. of  
if Sz measured 

=

=

Consider example 4.2 book. The arbitrary spin state given is
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Consider now the SAME spinor but from the perspective 
of the eigenspinors of the x Pauli matrix. You can use any 
basis after all.

2

= prob. of getting 
if Sx is measured   

=

1
-1

1
1


