$$
\left|\frac{a-b}{\sqrt{2}}\right|^{2}=\begin{gathered}
\text { prob. of getting }-\hbar / 2 \\
\text { if } S_{x} \text { is measured }
\end{gathered}=(1 / 2)|(-1+i) / \sqrt{6}|^{2}=1 / 6
$$

prob. of getting $+\hbar / 2$ or $-\hbar / 2$ if S_{x} is measured has to be 1 .

Indeed 5/6+1/6=1.

What is the "expectation value" of S_{x} ?

$$
\frac{5}{6}\left(+\frac{\hbar}{2}\right)+\frac{1}{6}\left(-\frac{\hbar}{2}\right)=\frac{\hbar}{3}
$$

Alternatively, you get the

$$
\begin{aligned}
& \mathbf{S}_{x}=\frac{\hbar}{2} \underbrace{\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)}_{\sigma_{x} \text { Pauli matrix }} \quad \text { same } \hbar / 3 \text { as follows: } \\
& \frac{\hbar}{2}\binom{2 / \sqrt{6}}{(1+i) / \sqrt{6}}
\end{aligned}
$$

Check last step!
$(e, f)\binom{c}{d}=$
$=e . c+f . d$

$$
\downarrow
$$

$$
\left\langle S_{x}\right\rangle=\chi^{\dagger} \mathbf{S}_{x} \chi=\left(\frac{(1-i)}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right)\left(\begin{array}{cc}
0 & \hbar / 2 \\
\hbar / 2 & 0
\end{array}\right)\binom{(1+i) / \sqrt{6}}{2 / \sqrt{6}} \stackrel{\hbar}{=} \frac{\hbar}{3}
$$

1
horizontal
spinor with
each component conjugated
vertical spinor as given

4.4.2 Electron in a magnetic field

When an electron is at rest inside a uniform magnetic field \mathbf{B}, the Hamiltonian is

$$
H=-\boldsymbol{\mu} \cdot \mathbf{B}=-\gamma \mathbf{B} \cdot \mathbf{S}
$$

$\mu=\gamma S$
$\gamma=$ "gyromagnetic ratio"
$=-|e| / m$ for electrons (factor 2 difference with classical calculation due to relativity)

A spinning charged object is made of little loops of current.
total charge q total mass m

Each little loop generates a little magnetic field. They add up to a net dipole magnetic moment.

When a little loop of current is introduced in a strong external magnetic field, the Lorentz force on the moving charges generates a torque.

The torque tries to align the dipole moment with B, and the energy is found to be in E\&M

$$
H=-\boldsymbol{\mu} \cdot \mathbf{B}
$$

Suppose for simplicity that the field points along the \mathbf{z} axis i.e. $\mathbf{B}=(0,0,1) B_{0}$. Then,

$$
\mathbf{H}=-\gamma B_{0} \mathbf{S}_{z}=-\frac{\gamma B_{0} \hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Eigenfunctions, or eigenspinors, are:
Change of notation only to emphasize 2×2 character. Optional!

$$
H\binom{1}{0}=\underbrace{\chi_{+}=\binom{1}{0}}_{\begin{array}{l}
\text { Energy } \\
\text { eigenvalue } E_{+}
\end{array}} \begin{array}{l}
\chi_{-}=\binom{0}{1} \\
\hline\left(\gamma B_{0} \hbar\right) / 2 \\
0
\end{array}) \begin{aligned}
& 1 \\
& 0 \\
& \text { For spin } \\
& \text { down, the } \\
& \text { energy } E_{-} \\
& \text {changes } \\
& \text { sign. }
\end{aligned}
$$

The Hamiltonian is time independent because the magnetic field is constant. Actually, all Hamiltonians we studied in QM411 were time independent.

If H is time independent, then the general solution is a linear combination of stationary states. In the square well potential there were infinite number of states. Remember Ch2 QM411 and Tests 1 and 3!

$$
\Psi(x, t)=\sum_{n=1}^{\infty} c_{n} \psi_{n}(x) e^{-i E_{n} t / \hbar}
$$

Focusing on $S=1 / 2$, all much easier. Just two states!

$$
\chi(t)=a \chi_{+} e^{-i E_{+} t / \hbar}+b \chi_{-} e^{-i E_{-} t / \hbar}=\binom{a e^{i \gamma B_{0} t / 2}}{b e^{-i \gamma B_{0} t / 2}}
$$

The values of a and b are fixed by initial condition at $t=0$, as we did in Ch. 2 for the coefficients c_{n}.

$$
\chi(0)=\binom{a}{b}
$$

We also need to normalize: $\quad|a|^{2}+|b|^{2}=1$
When we have 2 unknowns linked as in the normalization condition, we can parametrize with an angle as

$$
a=\cos (\alpha / 2) \quad b=\sin (\alpha / 2)
$$

because

$$
|a|^{2}+|b|^{2}=\cos ^{2}(\alpha / 2)+\sin ^{2}(\alpha / 2)=1
$$

Review from QM411:

Is this a solution of the time-dep. Sch. Eq. with $V(x)$?

$$
\begin{gather*}
\hat{H} \Psi(x, t)=\sum_{n=1}^{\infty} c_{n} \underbrace{\hat{H} \psi_{n}(x)}_{E_{n} \psi_{n}(x)} e^{-i E_{n} t / \hbar} \tag{a}\\
i \hbar \frac{\partial}{\partial t} \Psi(x, t)=\sum_{n=1}^{\infty} c_{n} \psi_{n}(x) \underbrace{i \hbar \frac{\partial}{\partial t} e^{-i E_{n} t / \hbar}}_{E_{n} e^{-i E_{n} t / \hbar}} \\
\begin{array}{l}
\text { (a) }=(b) \rightarrow \\
\text { solution of the time-dependent Sch. Eq. }
\end{array} \tag{b}
\end{gather*}
$$

Then, we arrive to a simple formula:

$$
\chi(t)=\binom{\cos (\alpha / 2) e^{i \gamma B_{0} t / 2}}{\sin (\alpha / 2) e^{-i \gamma B_{0} t / 2}}
$$

Physical meaning of angle α ? Let us repeat what we did before in the example $x=\binom{a}{b}$, but now for the spinor in a magnetic field.

$$
\begin{aligned}
\left\langle S_{x}\right\rangle= & \chi(t)^{t} \mathbf{S}_{x} \chi(t)=\left(\cos (\alpha / 2) e^{-i \gamma B_{0} t / 2}, \sin (\alpha / 2) e^{i \gamma B_{0} t / 2}\right) \\
& \times \frac{\hbar}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{\cos (\alpha / 2) e^{i \gamma B_{0} t / 2}}{\sin (\alpha / 2) e^{-i \gamma B_{0} t / 2}} \\
= & \frac{\hbar}{2} \sin \alpha \cos \left(\gamma B_{0} t\right) .
\end{aligned}
$$

Make sure you confirm this calculation.

This is the same as a classical dipole oscillating in a magnetic field. It is precessing ...

Not in book:

Why the electron precesses instead of simply aligning with the magnetic field to minimize energy?

REASON: the energy is conserved -- the electron cannot change its energy -- because the Hamiltonian is time independent.

$$
\text { Consider } \chi(t)=\binom{\cos (\alpha / 2) e^{i \gamma B_{0} t / 2}}{\sin (\alpha / 2) e^{-i \gamma B_{0} t / 2}}
$$

$\langle\mathbf{H}\rangle=\chi(t)^{\dagger} \mathbf{H} \chi(t)=E_{+} \cos ^{2}(\alpha / 2)+E_{-} \sin ^{2}(\alpha / 2)$
where $\begin{gathered}E_{+}=-\left(\gamma B_{0} \hbar\right) / 2 \\ E=+\left(\gamma B_{0} t\right) / 2\end{gathered}$
Time independent! The energy does not change in a t-independent Hamiltonian

