Anticipating what is coming in Ch. 6:

4.4.3 Addition of angular momenta

Suppose we have TWO particles, each with spin $\frac{1}{2}$.
We focus on the spin, not the actual relative motion.
It could be two electrons or one electron and one proton.
Since each spin can be up or down, then overall, regardless of actual distance, we have 4 combinations:

$$
\uparrow \uparrow, \uparrow \downarrow, \downarrow \uparrow, \downarrow \downarrow
$$

We want to know: what is the total spin? Natural answers are $1=1 / 2+1 / 2$ or $0=1 / 2-1 / 2$. But why not other numbers? Classically, any number between 1 and 0 is good.

The total spin operator is:

$$
\mathbf{S} \equiv \mathbf{S}^{\frac{1}{(1)}}+\mathbf{S}^{(2)}
$$

The z-component of the total spin operator is:

$$
S_{z} \chi_{1} \chi_{2}=\hbar \uparrow, \uparrow \downarrow, \downarrow \uparrow, \downarrow \downarrow, \quad \begin{aligned}
& \uparrow \uparrow: m=1 \\
& \uparrow \downarrow: m=0 \\
& \\
& \downarrow \uparrow: m=0 ; \\
& \downarrow \downarrow: m=-1 .
\end{aligned}
$$

What does this mean? Two combinations with $m=0$?
Use "lowering operators" (or "raising operators") to find special combinations.

$$
\begin{gathered}
S_{-}=S_{-}^{(1)}+S_{-}^{(2)} \\
S_{-}(\uparrow \uparrow)=\left(S_{-}^{(1)} \uparrow\right) \uparrow+\uparrow\left(S_{-}^{(2)} \uparrow\right) \\
=(\hbar \downarrow) \uparrow+\uparrow(\hbar \downarrow)=\hbar(\downarrow \uparrow+\uparrow \downarrow)
\end{gathered}
$$

Not in book:

$$
\begin{gathered}
S_{-}(\downarrow \uparrow+\uparrow \downarrow)=\left(S_{-}^{(1)}+S_{-}^{(2)}\right)(\downarrow \uparrow+\uparrow \downarrow)= \\
=(\underbrace{S_{-}^{(1)} \downarrow}_{=0}) \uparrow+\underbrace{\left.S_{-}^{(1)} \uparrow\right)}_{(\hbar \downarrow)} \downarrow+\downarrow \underbrace{\left(S_{-}^{(2)} \uparrow\right)}_{(\hbar \downarrow)}+\uparrow \underbrace{S_{-}^{(2)} \downarrow}_{=0})= \\
=2 \hbar \downarrow \downarrow
\end{gathered}
$$

This means that $\uparrow \uparrow,(\downarrow \uparrow+\uparrow \downarrow)$, and $\downarrow \downarrow$ are linked forming a set called the triplet.

Make sure you understand this page and next, step by step.

Not in book:

$$
\begin{gathered}
S_{-}(\downarrow \uparrow-\uparrow \uparrow \downarrow)=(S_{-}^{(1)}+\underbrace{S_{-}^{(2)}}_{-})(\downarrow \uparrow-\uparrow \downarrow)= \\
=0 . \underbrace{\left(S_{-}^{(1)} \downarrow\right)}_{(\hbar \downarrow \downarrow)} \uparrow-\underbrace{\left(S_{-}^{(1)} \uparrow\right)}_{(\hbar \downarrow)} \downarrow+\downarrow(\underbrace{S_{-}^{(2)} \uparrow}_{-})-\uparrow(\underbrace{S_{-}^{(2)} \downarrow}_{-})= \\
=0 .
\end{gathered}
$$

If you apply S_{+}it gives zero as well. This means that $(\uparrow \downarrow-\downarrow \uparrow)$ is alone forming a singlet.

$$
\begin{aligned}
& \left\{\begin{array}{l}
|11\rangle=\uparrow \uparrow \\
|10\rangle=\frac{1}{\sqrt{2}}(\uparrow \downarrow+\downarrow \uparrow) \\
|1-1\rangle=\downarrow \downarrow
\end{array}\right\} \quad s=1 \begin{array}{l}
\text { (triplet; like } \\
\text { for } L \text { angular } \\
\text { momentum, } \\
\text { projections } \\
\text { are discrete) }
\end{array} \\
& \left\{\begin{array}{l}
\left.|00\rangle=\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow)\right\} \quad s=0 \quad \text { (singlet) }
\end{array}\right. \\
& |s m\rangle \begin{array}{l}
s \text { denotes the total spin and } m \text { denotes } \\
\text { the z-axis projection of the total spin. }
\end{array}
\end{aligned}
$$

What we called the "triplet" has three states, but is it truly a state of total spin 1?

Consider the total spin operator:
$S^{2}=\left(\mathbf{S}^{(1)}+\mathbf{S}^{(2)}\right) \cdot\left(\mathbf{S}^{(1)}+\mathbf{S}^{(2)}\right)=\left(S^{(1)}\right)^{2}+\left(S^{(2)}\right)^{2}+2 \mathbf{S}^{(1)} \cdot \mathbf{S}^{(2)}$
Example for state "up down":

$$
\begin{aligned}
\mathbf{S}^{(1)} \cdot \mathbf{S}^{(2)}(\uparrow \downarrow)= & \left(S_{x}^{(1)} \uparrow\right)\left(S_{x}^{(2)} \downarrow\right)-\left(\begin{array}{c}
\left.\left.\left(S_{y}^{(1)} \uparrow\right)\right) S_{y}^{(2)} \downarrow\right)+\left(S_{z}^{(1)} \uparrow\right)\left(S_{z}^{(2)} \downarrow\right) \\
= \\
=\left(\frac{\hbar}{2} \downarrow\right)\left(\frac{\hbar}{2} \uparrow\right)+\left(\frac{i \hbar}{2} \downarrow\right)\left(\frac{-i}{2} \uparrow\right)+\left(\frac{\hbar}{2} \uparrow\right)\left(\frac{-\hbar}{2} \downarrow\right) \\
= \\
\frac{\hbar^{2}}{4}(2 \downarrow \uparrow-\uparrow \downarrow) \\
\end{array} \quad \frac{\hbar\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\binom{1}{0}=\frac{\hbar}{2}\binom{0}{i}=\frac{\hbar}{2}\binom{0}{1}}{} .\right.
\end{aligned}
$$

Similarly: $\quad \mathbf{S}^{(1)} \cdot \mathbf{S}^{(2)}(\downarrow \uparrow)=\frac{\hbar^{2}}{4}(2 \uparrow \downarrow-\downarrow \uparrow)$

$$
\begin{gathered}
\mathbf{S}^{(1)} \cdot \mathbf{S}^{(2)}|10\rangle=\frac{\hbar^{2}}{4} \frac{1}{\sqrt{2}}(2 \downarrow \uparrow-\uparrow \downarrow+2 \uparrow \downarrow-\downarrow \uparrow)=\frac{\hbar^{2}}{4}|10\rangle . \\
\quad|10\rangle=\frac{1}{\sqrt{2}}(\uparrow \downarrow+\downarrow \uparrow)
\end{gathered}
$$

Total spin squared

$$
\begin{aligned}
& S^{2}|10\rangle=\left(\frac{3 \hbar^{2}}{4}+\frac{3 \hbar^{2}}{4}+2 \frac{\hbar^{2}}{4}\right) \\
& \left(S^{(1)}\right)^{2} \quad|10\rangle=2 \hbar^{2}|10\rangle \\
& \left(S^{(2)}\right)^{2} \\
& s(s+1)=1(1+1)=2 \\
& 2 \mathbf{S}^{(1)} \cdot \mathbf{S}^{(2)}
\end{aligned}
$$

$$
s(s+1)=1 / 2(1 / 2+1)=3 / 4
$$

Same story with "singlet" (left as exercise):

$$
\mathbf{S}^{(1)} \cdot \mathbf{S}^{(2)}|00\rangle=\frac{\hbar^{2}}{4} \frac{1}{\sqrt{2}}(2 \downarrow \uparrow-\uparrow \downarrow-2 \uparrow \downarrow+\downarrow \uparrow)=-\frac{3 \hbar^{2}}{4}|00\rangle
$$

$$
\begin{aligned}
& S^{2}|00\rangle=\left(\frac{3 \hbar^{2}}{4}+\frac{3 \hbar^{2}}{4}-2 \frac{3 \hbar^{2}}{4}\right)|00\rangle=0 \\
& \uparrow \\
& s(s+1)=0(0+1)=0
\end{aligned}
$$

Also left as exercise, application of total spin over "up up" $|11\rangle$ and "down down" $|1-1\rangle$.
$|s m\rangle$
Then, we have confirmed that indeed we form a triplet and a singlet, out of two spins $\frac{1}{2}$.

$$
\begin{aligned}
& \left\{\begin{array}{ll}
|11\rangle=\uparrow \uparrow \\
|10\rangle & =\frac{1}{\sqrt{2}}(\uparrow \downarrow+\downarrow \uparrow) \\
|1-1\rangle & =\downarrow \downarrow
\end{array}\right\} \quad s=1 \quad \text { triplet } \\
& \left\{|00\rangle=\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow)\right\} \quad s=0 \quad \text { singlet }
\end{aligned}
$$

