Not in book (counting of states):

$$
\begin{array}{cc}
\uparrow \uparrow & \uparrow \uparrow \\
\uparrow \downarrow & \frac{1}{\sqrt{2}}(\uparrow \downarrow+\downarrow \uparrow) \\
\downarrow \uparrow & \downarrow \downarrow \\
\downarrow \downarrow & \frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow)
\end{array}
$$

$2^{2}=4$ states	4 states
sort of	grouped as $S=1$
random	(3) and $S=0(1)$

Note: after finding $S=1$, there was only 1 state left, thus had to be singlet and had to be orthogonal, thus fixing the "-"
$\uparrow \uparrow \uparrow$
$\uparrow \uparrow \downarrow, \uparrow \downarrow \uparrow, \downarrow \uparrow \uparrow \quad 2^{3}=8$ states
$\uparrow \downarrow \downarrow, \downarrow \uparrow \downarrow, \downarrow \downarrow \uparrow$ sort of $\downarrow \downarrow \downarrow$
$\uparrow \uparrow \uparrow, S_{-} \uparrow \uparrow \uparrow, \mathrm{S}^{2} _\uparrow \uparrow \uparrow, \mathrm{S}^{3} _\uparrow \uparrow \uparrow$ 4 states form S total $3 / 2$

The 4 states left form TWO S total $\frac{1}{2}$ states.
$3 / 2 \oplus 1 / 2 \oplus_{1 / 2}$

Not in book (and FYI only):

FYI: spins can interact among themselves, not only with magnetic fields.

It is as if other spins " j " produce an effective magnetic field on the spin "i" you are looking at.

$$
H=J \sum_{\langle i, j\rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j}
$$

Ground state? Number of states grows like $2^{N}(=2,4,8,16, \ldots)$

Record done exactly N~ 40. $2^{40}=1,099,511,627,776$ states

Crystal structure of undoped $\mathrm{La}_{2} \mathbf{C u O}_{4}$

WITHOUTPROOF, this is what happens when you combine a spin s_{1} and a spin s_{2} (each individually $0,1 / 2,1,3 / 2, \ldots$).

The total spin s of the combination can be:

$$
s=\left(s_{1}+s_{2}\right),\left(s_{1}+s_{2}-1\right),\left(s_{1}+s_{2}-2\right), \ldots,\left|s_{1}-s_{2}\right|
$$

Example 1: for $s_{1}=1 / 2$ and $s_{2}=1 / 2$, then s runs from $s_{1}+s_{2}=1$ to $\left|s_{1}-s_{2}\right|=0$, with nothing in between.

Example 2: for $s_{1}=3 / 2$ and $s_{2}=2$, then s runs from $s_{1}+s_{2}=7 / 2$ to $\left|s_{1}-s_{2}\right|=1 / 2$, with $5 / 2$ and $3 / 2$ in between.

Example 3: this unproven theorem holds also for the addition of orbital angular momentum / and spin s. For $l=2$ and $s=1 / 2$, then total j runs from for $1+s=5 / 2$ to $\left|s_{1}-s_{2}\right|=3 / 2$, with nothing in between.

Example 4: if you have three particles with $s_{1}=1 / 2, s_{2}=1 / 2$, and $s_{3}=1 / 2$, then first you add two, such as s_{1} and s_{2}, finding $s_{\text {partial }}=1,0$ and then add $s_{\text {partial }}$ with s_{3} finding $3 / 2,1 / 2$ (for $s_{\text {partial }}=1$) and another $1 / 2$ (for $s_{\text {partial }}=0$). So there are two independent combinations with total spin $\frac{1}{2}$.

We will NOT deal with the Clebsch-Gordan coefficients, but with the foundation given already, it should be easy for you to learn from the book.

Chapter 5: Identical Particles

For one particle, like one electron in the H atom, in $Q M$ we simply need the wave function $\Psi\left(r_{1}, t\right)$ where r_{1} is the coordinate of electron " 1 ".

Consider now two particles as warm up.
For two particles, e.g.two electrons in the He atom, in QM we need the wave function $\Psi\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, t\right)$ where \boldsymbol{r}_{1} and \boldsymbol{r}_{2} are the two coordinates.

Mathematically, the Sch. Eq. $i \hbar \frac{\partial \Psi}{\partial t}=H \Psi$ has a more complicated Hamiltonian.

$$
H=-\frac{\hbar^{2}}{2 m_{1}} \nabla_{1}^{2}-\frac{\hbar^{2}}{2 m_{2}} \nabla_{2}^{2}+V\left(\mathbf{r}_{1}, \mathbf{r}_{2}, t\right)
$$

The potential V typically has terms like e-p attraction, but also e-e repulsion.

Example, for the He atom:

$$
\dot{H}=\left\{-\frac{\hbar^{2}}{2 m} \nabla_{1}^{2}-\frac{1}{4 \pi \epsilon_{0}} \frac{2 e^{2}}{r_{1}}\right\}+\left\{-\frac{\hbar^{2}}{2 m} \nabla_{2}^{2}-\frac{1}{4 \pi \epsilon_{0}} \frac{2 e^{2}}{r_{2}}\right\}+\underset{\text { p-el attraction }}{\frac{1}{4 \pi \epsilon_{0}} \frac{e^{2}}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|}}
$$

The last term, the e-e repulsion, makes everything "complicated" because it "correlates" the electrons:

When one e goes one way, the other e tries to avoid it, because they repel. Ignoring this e-e repulsion is an approx. that "sometimes is good, sometimes not".

Finally, as usual, we must normalize to 1 because of the probabilistic interpretation:

$$
\int\left|\Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, t\right)\right|^{2} d^{3} \mathbf{r}_{1} d^{3} \mathbf{r}_{2}=1
$$

5.1.1 Bosons and Fermions

First, for simplicity, let us neglect the e-e repulsion. The energy levels are the same as in the H atom.

Assume one particle is in state "a" (e.g. 1s, spin up) and the other particle is in state "b" (e.g. $2 s$, spin down).

Then, ONLY in this particular case when e-e is neglected, the wave function is the product:

$$
\psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\psi_{a}\left(\mathbf{r}_{1}\right) \psi_{b}\left(\mathbf{r}_{2}\right)
$$

To prove this, use as potential V simply the sum of two H -atom terms, one per particle i.e. the $\mathrm{p}-\mathrm{e} 1$ and $\mathrm{p}-\mathrm{e} 2$ attractions.

However, the key new concept is that if electrons are identical, then we cannot say "electron 1 is in $(1 s, \uparrow)^{\prime}$. We can only say "an electron is in $(1 s, \uparrow)$ ".

In classical physics we can always "follow" particles and tell them apart, even if identical. READ discussion in book pages 203-204.

In quantum physics we cannot follow particles. We only know probabilities.

Thus, if a particle is in state "a" and a particle in state "b", we need to symmetrize the wave function to account for particles being identical.

One way to symmetrize is to add the two cases:

$$
\psi_{+}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=A\left[\psi_{a}\left(\mathbf{r}_{1}\right) \psi_{b}\left(\mathbf{r}_{2}\right)+\psi_{b}\left(\mathbf{r}_{1}\right) \psi_{a}\left(\mathbf{r}_{2}\right)\right]
$$

In what sense this has been "symmetrized"? When \mathbf{r}_{1} and \mathbf{r}_{2} are exchanged, the first term becomes the second, and the second the first.

Then:

$$
\psi_{+}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=\psi_{+}\left(\boldsymbol{r}_{2}, \boldsymbol{r}_{1}\right)
$$

Elementary particles where the "+" applies are called bosons.

Because in QM we only care about the wave function in absolute value, there is another possible combination:

$$
\psi_{-}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=A\left[\psi_{a}\left(\mathbf{r}_{1}\right) \psi_{b}\left(\mathbf{r}_{2}\right)-\psi_{b}\left(\mathbf{r}_{1}\right) \psi_{a}\left(\mathbf{r}_{2}\right)\right]
$$

In this case, when r_{1} and \mathbf{r}_{2} are exchanged, we collect a minus sign in front:

$$
\psi_{-}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=-\psi_{-}\left(\boldsymbol{r}_{2}, \boldsymbol{r}_{1}\right)
$$

Elementary particles where the "-" applies are called fermions.

In summary, we have to accept as another law of Nature that elementary particles are either bosons, for the + case, or fermions, for the - case.

Moreover, there is a link between the sign +- in the combination and the value of the spin:
bosons <-> integer spin (example: photon)
fermions <-> half-integer spin (example: electron).

