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Note: after finding S=1, there The 4 states left form TWO

1
was only 1 state left, thus had to S total 7 states.

be singlet and had to be 3/2®1/2®1/2
orthogonal, thus fixing the "-"



Not in book (and FYT only):

FYI: spins can interact Ground state? Number of states

among themselves, not only grows like 2N (=2,4,8,16, ..)

ith tic fields.
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produce an effective Crystal structure of undoped La,CuO,
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The CuOs octahedrons form

a layer called a CuO: layer.

A Cu ** ion has one d hole

with spin %.

These localized spins form

| %> _an antiferromagnetic phase.

" La;CuOy is the
antiferromagnetic insulator
with Tx=240K.




WITHOUT PROOF, this is what happens when you combine
a spin s;and a spin s,(each individually 0,1/2,1,3/2, ..).

The total spin s of the combination can be:

s=(s1+52), s1+s:2—=1), 51 +82—=2), ..., |sp =52

Example 1: for s;=1/2 and s5,=1/2, then s runs from
s#s,= 110 |s;-s,|= 0, with nothing in between.

Example 2: for s,=3/2 and s,=2, then s runs from
si+5,=7/2 to |s;-s,|=1/2, with 5/2 and 3/2 in between.



Example 3: this unproven theorem holds also for the
addition of orbital angular momentum / and spin s. For
I=2 and s=1/2, then total j runs from for l+s=5/2 to
|s;-s,|= 3/2, with nothing in between.

Example 4: if you have three particles with s,=1/2, s,=1/2,
and s;=1/2, then first you add two, such as s;and s,
finding syq.1iq = 1,0 and then add s+ with s finding
3/2,1/2 (for Spartial =1) and ano‘rher' 1/2 (for spariai=0). So
there are two mdependenT combinations wn’rh total spin 3.

We will NOT deal with the Clebsch-Gordan coefficients,
but with the foundation given already, it should be easy
for you to learn from the book.



Chapter 5: Identical Particles

For one particle, like one electron in the H atom,
in QM we simply need the wave function ¥(ry,t)
where r;is the coordinate of electron "1".

Consider now two particles as warm up.

For two particles, e.g. two
electrons in the He atom, iIn QM
we need the wave function
¥(r,r,,t) where riand r,
are the two coordinates.
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Mathematically, the Sch. Eq. ifi— = HW¥ has a

more complicated Hamiltonian.
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The potential V typically has terms like e-p
attraction, but also e-e repulsion.

Example, for the He atom:
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The last term, the e-e repulsion, makes
everything "complicated” because it
"correlates” the electrons:

When one e goes one way, the other e fries
to avoid it, because they repel. Ignoring this
e-e repulsion is an approx. that "sometimes is

good, sometimes not".

Finally, as usual, we must normalize to 1
because of the probabilistic interpretation:

f W (5, 12, 1) > dr; dPry = 1




5.1.1 Bosons and Fermions

First, for simplicity, let us neglect the e-e repulsion.
The energy levels are the same as in the H atom.

Assume one particle is in state "a" (e.g. s, spin up) and
the other particle is in state "b" (e.g. 2s, spin down).

Then, ONLY in this particular case when e-e is
neglected, the wave function is the product:

Y (ry, 1) = g (i) ¥p (r2)

To prove this, use as potential V simply the sum of two H-atom
terms, one per particle i.e. the p-el and p-e2 attractions.



However, the key new concept is that if electrons
are identical, then we cannot say “electron 1 is in
(1s,1)". We can only say "an electron is in (1s,1) “.

In classical physics we can always "follow"
particles and tell them apart, even if identical.
READ discussion in book pages 203-204.

In quantum physics we cannot follow particles.
We only know probabilities.

Thus, if a particle is in state "a" and a particle in
state "b", we need to symmetrize the wave
function to account for particles being identical.



One way to symmetrize is to add the two cases:

Vo (1, 12) = AlYaT)ve(r2) + ¥ (F1) va(ry)]

In what sense this has been "symmetrized"?
When r;and r, are exchanged, the first term
becomes the second, and the second the first.

Then:
Ty (rurd) =y (o)

Elementary particles where the
"+" applies are called bosons.
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Because in QM we only care about the wave
function in absolute value, there is another
possible combination:

Yo (r1,12) = Al (@) ¥s(r2) - ¥ (1) va(r)]

In this case, when r;and r, are exchanged, we
collect a minus sign in front:

W (rr2)= - w_(rar)

Elementary particles where the

w u

-" applies are called fermions.
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In summary, we have to accept as another law of
Nature that elementary particles are either

bosons, for the + case, or fermions, for the - case.

Moreover, there is a link between the sign +- in
the combination and the value of the spin:

bosons <-> integer spin (example: photon)

fermions <-> half-integer spin (example: electron).
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