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sort of 
random

4 states
grouped as S=1 
(3) and S=0 (1)

Not in book (counting of states):

Note: after finding S=1, there 
was only 1 state left, thus had to 
be singlet and had to be 
orthogonal, thus fixing the “-”
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23 =8 
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sort of 
random

↑↑↑ , S_↑↑↑, S2_↑↑↑, S3_↑↑↑
4 states form S total 3/2

The 4 states left form TWO 
S total ½ states.

3/2 + 1/2 + 1/2
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Not in book (and FYI only):

FYI: spins can interact 
among themselves, not only 
with magnetic fields.

It is as if other spins “j” 
produce an effective 
magnetic field on the spin 
“i” you are looking at.

Ground state? Number of states 
grows like 2N (=2,4,8,16, …)

Record done exactly N~ 40. 
240 = 1,099,511,627,776 states
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WITHOUT PROOF, this is what happens when you combine 
a spin s1 and a spin s2 (each individually 0,1/2,1,3/2, …). 

The total spin s of the combination can be:

Example 1: for s1 =1/2 and s2=1/2, then s runs from  
s1+s2 = 1 to |s1-s2|= 0, with nothing in between.

Example 2: for s1 =3/2 and s2=2, then s runs from     
s1+s2 = 7/2 to |s1-s2|= 1/2, with 5/2 and 3/2 in between.
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Example 3: this unproven theorem holds also for the 
addition of orbital angular momentum l and spin s. For 
l=2 and s=1/2, then total j runs from for l+s = 5/2 to  
|s1-s2|= 3/2, with nothing in between.

Example 4: if you have three particles with s1 =1/2, s2=1/2, 
and s3=1/2, then first you add two, such as s1 and s2, 
finding spartial = 1,0 and then add spartial with s3 finding 
3/2,1/2 (for spartial =1) and another 1/2 (for spartial=0). So 
there are two independent combinations with total spin ½. 

We will NOT deal with the Clebsch-Gordan coefficients, 
but with the foundation given already, it should be easy 
for you to learn from the book. 



5

Chapter 5: Identical Particles

Consider now two particles as warm up. 

For one particle, like one electron in the H atom, 
in QM we simply need the wave function Y(r1,t) 
where r1 is the coordinate of electron “1”.

For two particles, e.g. two 

electrons in the He atom, in QM 
we need the wave function 
Y(r1,r2,t) where r1 and r2

are the two coordinates.

r1

r2
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The potential V typically has terms like e-p 
attraction, but also e-e repulsion. 

Example, for the He atom:
r1

r2

Mathematically, the Sch. Eq.                     has a 
more complicated Hamiltonian. 

i ћ

e1-e2 repulsionp-e2 attractionp-e1 attraction
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Finally, as usual, we must normalize to 1 
because of the probabilistic interpretation: 

The last term, the e-e repulsion, makes 
everything “complicated” because it 
“correlates” the electrons: 

When one e goes one way, the other e tries 
to avoid it, because they repel. Ignoring this 
e-e repulsion is an approx. that “sometimes is 
good, sometimes not”.
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5.1.1 Bosons and Fermions

First, for simplicity, let us neglect the e-e repulsion. 
The energy levels are the same as in the H atom. 

Assume one particle is in state “a” (e.g. 1s, spin up)  and 
the other particle is in state “b” (e.g. 2s, spin down). 

Then, ONLY in this particular case when e-e is 
neglected, the wave function is the product: 

To prove this, use as potential V simply the sum of two H-atom 
terms, one per particle i.e. the p-e1 and p-e2 attractions.
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However, the key new concept is that if electrons 
are identical, then we cannot say “electron 1 is in 
(1s,↑)”. We can only say “an electron is in (1s,↑) ”.

In classical physics we can always “follow” 
particles and tell them apart, even if identical.
READ discussion in book pages 203-204.

In quantum physics we cannot follow particles. 
We only know probabilities.

Thus, if a particle is in state “a” and a particle in 
state “b”, we need to symmetrize the wave 
function to account for particles being identical.
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In what sense this has been “symmetrized”? 
When r1 and r2 are exchanged, the first term 
becomes the second, and the second the first.

Then:

One way to symmetrize is to add the two cases:

y (r1,r2) = y   (r2,r1)+ +

+ +

Elementary particles where the 
“+” applies are called bosons.
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Because in QM we only care about the wave 
function in absolute value, there is another 
possible combination:

In this case, when r1 and r2 are exchanged, we 
collect a minus sign in front:

y (r1,r2) =    y   (r2,r1)- --

- -

Elementary particles where the 
“-” applies are called fermions.
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In summary, we have to accept as another law of 
Nature that elementary particles are either 
bosons, for the + case, or fermions, for the – case. 

Moreover, there is a link between the sign +- in 
the combination and the value of the spin:

bosons <-> integer spin (example: photon) 

fermions <-> half-integer spin (example: electron).


