If two electrons are in the same state, such as $(1s,\uparrow)$, then the "-" wave function cancels:

$$\psi_{-}(\mathbf{r}_{1},\mathbf{r}_{2}) = A[\psi_{a}(\mathbf{r}_{1})\psi_{a}(\mathbf{r}_{2}) - \psi_{a}(\mathbf{r}_{1})\psi_{a}(\mathbf{r}_{2})] = 0$$

Then, the famous **Pauli principle** can be deduced from the fact that electrons are fermions.

This is somewhat similar to the case when we deduced the **uncertainty principle** in QM411.

It is important to keep the number of arbitrary laws to a minimum! Let us define the exchange operator P.

 $P \psi(\mathbf{r}_1, \mathbf{r}_2) = \psi(\mathbf{r}_2, \mathbf{r}_1)$ Applying P again:

$$P P \psi(\mathbf{r}_1, \mathbf{r}_2) = P \psi(\mathbf{r}_2, \mathbf{r}_1) = \psi(\mathbf{r}_1, \mathbf{r}_2)$$

Because $P^2 = 1$ as operator, then the eigenvalues are +1 and -1.

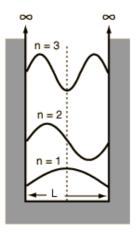
Also [H,P]=0:

$$H = \left\{ -\frac{\hbar^2}{2m} \nabla_1^2 - \frac{1}{4\pi\epsilon_0} \frac{2e^2}{r_1} \right\} + \left\{ -\frac{\hbar^2}{2m} \nabla_2^2 - \frac{1}{4\pi\epsilon_0} \frac{2e^2}{r_2} \right\} + \frac{1}{4\pi\epsilon_0} \frac{e^2}{|\mathbf{r}_1 - \mathbf{r}_2|}$$

Example 5:

Consider two particles without spin in the 1D infinite square well

$$\psi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right), \quad E_n = n^2 K$$
$$E_n = \frac{\hbar^2 k_n^2}{2m} = \frac{n^2 \pi^2 \hbar^2}{2ma^2}$$

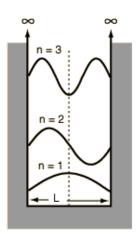


x = 0 at left wall of box.

(1) If particles are distinguishable, then

$$\psi_{n_1n_2}(x_1, x_2) = \psi_{n_1}(x_1)\psi_{n_2}(x_2), \quad E_{n_1n_2} = (n_1^2 + n_2^2)K$$

For ground state $n_1 = n_2 = 1$:



Ground state
$$n_1 = n_2 = 1$$
:

$$\psi_{11} = \frac{2}{a} \sin(\pi x_1/a) \sin(\pi x_2/a), \quad E_{11} = 2K$$
First excited state $n_1 = 1, n_2 = 2$ or $n_1 = 2, n_2 = 1$

$$\psi_{12} = \frac{2}{a} \sin(\pi x_1/a) \sin(2\pi x_2/a), \quad E_{12} = 5K$$

$$\psi_{21} = \frac{2}{a} \sin(2\pi x_1/a) \sin(\pi x_2/a), \quad E_{21} = 5K$$
Degeneracy = 2

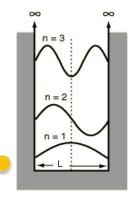
 ∞

 ∞

(2) If particles are bosons:

Ground state (E=2K) is the same $n_1 = n_2 = 1$:

$$\psi_{11} = \frac{2}{a} \sin(\pi x_1/a) \sin(\pi x_2/a), \quad E_{11} = 2K$$



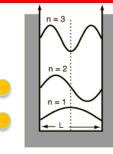
x = 0 at left wall of box.

$$P \psi(x_1, x_2) = \psi(x_2, x_1) = + \psi(x_1, x_2)$$

First excited state (E=5K) is now nondegenerate

$$\psi^{\text{excited}}(x_1, x_2) = \frac{\sqrt{2}}{a} \left[\sin(\pi x_1/a) \sin(2\pi x_2/a) + \sin(2\pi x_1/a) \sin(\pi x_2/a) \right]$$

$$\mathcal{P}$$
 ψ excited $(x_1, x_2) = \psi$ excited $(x_2, x_1) = +\psi$ excited (x_1, x_2)



(3) If particles are fermions:

Because temporarily I am forgetting about the spin, then I cannot place 2 particles in $n_1 = 1$.

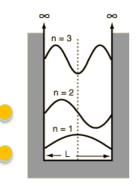


x = 0 at left wall of box.

Then, the true ground state (E=5K) becomes:

$$\psi(x_1,x_2) = \frac{\sqrt{2}}{a} \left[\sin(\pi x_1/a) \sin(2\pi x_2/a) - \sin(2\pi x_1/a) \sin(\pi x_2/a) \right]$$

$$P \psi(x_1, x_2) = \psi(x_2, x_1) = -\psi(x_1, x_2)$$



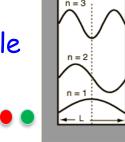
In summary:

	distinguishable	bosons	fermions
E=2K	1	1	0
E=5K	2	1	1
etc			

This has profound implications for many-body physics and for thermodynamics

Three particles?

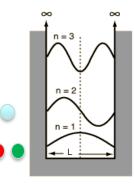
distinguishable



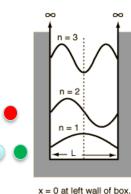
 ∞

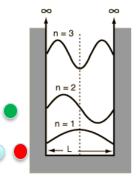
x = 0 at left wall of box.

 ∞

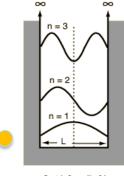


x = 0 at left wall of box.



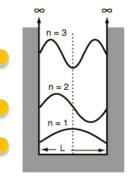


x = 0 at left wall of box.

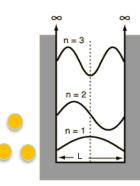


x = 0 at left wall of box.

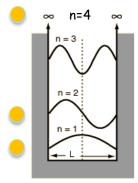
fermions



x = 0 at left wall of box.



x = 0 at left wall of box.



5.1.2 Exchange Forces

This is an "effective force", not a real one.

It is another of the consequences of having symmetric or antisymmetric combinations. Consider 1D and states a and b.

distinguishable

$$\psi(x_1, x_2) = \psi_a(x_1)\psi_b(x_2)$$

bosons

$$\psi_{+}(x_{1}, x_{2}) = \frac{1}{\sqrt{2}} [\psi_{a}(x_{1})\psi_{b}(x_{2}) + \psi_{b}(x_{1})\psi_{a}(x_{2})]$$

fermions

$$\psi_{-}(x_{1}, x_{2}) = \frac{1}{\sqrt{2}} [\psi_{a}(x_{1})\psi_{b}(x_{2}) - \psi_{b}(x_{1})\psi_{a}(x_{2})]$$

Consider the typical "distance" between particles, via the quantity:

$$\langle (x_1 - x_2)^2 \rangle = \langle x_1^2 \rangle + \langle x_2^2 \rangle - 2 \langle x_1 x_2 \rangle$$

Distance in 1D

$$\langle x_{1}^{2} \rangle = \int x_{1}^{2} |\psi_{a}(x_{1})|^{2} dx_{1} \int |\psi_{b}(x_{2})|^{2} dx_{2} = \langle x^{2} \rangle_{a}$$

$$\langle x_{2}^{2} \rangle = \int |\psi_{a}(x_{1})|^{2} dx_{1} \int x_{2}^{2} |\psi_{b}(x_{2})|^{2} dx_{2} = \langle x^{2} \rangle_{b}$$

$$\langle x_{1}x_{2} \rangle = \int x_{1} |\psi_{a}(x_{1})|^{2} dx_{1} \int x_{2} |\psi_{b}(x_{2})|^{2} dx_{2} = \langle x \rangle_{a} \langle x \rangle_{b}$$

$$\langle (x_{1} - x_{2})^{2} \rangle_{d} = \langle x^{2} \rangle_{a} + \langle x^{2} \rangle_{b} - 2 \langle x \rangle_{a} \langle x \rangle_{b}$$

distinguishable

The main punchline is that the distance changes for the symmetric and antisymmetric combinations:

$$\begin{array}{l} \left| \langle (x_1 - x_2)^2 \rangle_{\pm} = \langle x^2 \rangle_a + \langle x^2 \rangle_b - 2 \langle x \rangle_a \langle x \rangle_b \mp 2 |\langle x \rangle_{ab} |^2 \\ \text{fermions} & \text{fermions} & \text{fermions} \end{array} \right|^2 \\ \end{array}$$

So even non-interacting particles (no Coulomb repulsion at all) suffer an effective force: bosons attract and fermions repel.