Placing all together: the space and the spin (1D for simplicity)

$$
\begin{gathered}
\psi_{S}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=\frac{1}{\sqrt{2}}\left[\psi_{a}\left(x_{1}\right) \psi_{b}\left(x_{2}\right)+\psi_{b}\left(x_{1}\right) \psi_{a}\left(x_{2}\right)\right] \\
\psi_{A S}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=\frac{1}{\sqrt{2}}\left[\psi_{a}\left(x_{1}\right) \psi_{b}\left(x_{2}\right)-\psi_{b}\left(x_{1}\right) \psi_{a}\left(x_{2}\right)\right] \\
\chi_{S}\left(\boldsymbol{S}_{1}, \boldsymbol{S}_{2}\right)=\frac{1}{\sqrt{2}}\left(\uparrow_{1} \downarrow_{2}+\downarrow_{1} \uparrow_{2}\right) \quad \chi_{A S}\left(\boldsymbol{S}_{1}, \boldsymbol{S}_{2}\right)=\frac{1}{\sqrt{2}}\left(\uparrow_{1} \downarrow_{2}-\downarrow_{1} \uparrow\right)
\end{gathered}
$$

For 2 electrons (i.e. fermions):

$$
\begin{array}{cc|c}
\Psi=\psi_{S}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right) \chi_{A S}\left(\boldsymbol{S}_{1}, \boldsymbol{S}_{2}\right) O K! & \Psi=\psi_{S}\left(\mathbf{r}, \chi_{S}\left(\boldsymbol{S}_{1}, \boldsymbol{S}_{2}\right) \mathrm{NO}\right. \\
\Psi=\psi_{A S}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right) \chi_{S}\left(\boldsymbol{S}_{1}, \boldsymbol{S}_{2}\right) \quad O K! & \Psi=\psi_{A S}\left(r \cdot \chi_{A S}\left(\boldsymbol{S}_{1}, \boldsymbol{S}_{2}\right) \mathrm{NO}\right.
\end{array}
$$

Some consequences of AS vs S:

Because the full wave function has a "space portion" and a "spin portion", as shown next for $2 e$ in He, the two possibilities are

$$
\begin{aligned}
& \Psi_{2 e}=\psi_{S}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right) \chi_{A S}\left(\boldsymbol{S}_{1}, \boldsymbol{S}_{2}\right) \\
& \Psi_{2 e}=\psi_{A S}\left(\mathbf{r}_{1}, \boldsymbol{r}_{2}\right) \chi_{S}\left(\boldsymbol{S}_{1}, \boldsymbol{S}_{2}\right)
\end{aligned}
$$

then, all other things equal, the e-e repulsion, that has nothing to do with spin, prefers the AS space portion because electrons are further apart than in S space portion.

5.2 Atoms

The Hamiltonian is:

$$
H=\underbrace{\sum_{j=1}^{Z}\left\{-\frac{\hbar^{2}}{2 m} \nabla_{j}^{2}-\left(\frac{1}{4 \pi \epsilon_{0}}\right) \frac{Z e^{2}}{r_{j}}\right\}}_{\substack{\text { one-body e-p attraction } \\ \text { "the easy part" }}}+\frac{1}{2}\left(\frac{1}{4 \pi \epsilon_{0}}\right) \sum_{j \neq k}^{Z} \frac{e^{2}}{\left|\mathbf{r}_{j}-\mathbf{r}_{k}\right|}
$$

Big challenge: $H \psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{Z}\right) \chi\left(\mathbf{s}_{1}, \mathbf{s}_{2}, \ldots, \mathbf{s}_{Z}\right)=$ here
$=E \psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{Z}\right) \chi\left(\mathbf{s}_{1}, \mathbf{s}_{2}, \ldots, \mathbf{s}_{Z}\right)$

No r dependence

In writing the Sch Eq we assumed that the spins maybe coupled among themselves and/or with a uniform magnetic field, but the spins do not depend on position.

Because electrons are fermions, the entire wave function must be antisymmetric.

5.2.1 Helium $(Z=2)$

$$
H=\left\{-\frac{\hbar^{2}}{2 m} \nabla_{1}^{2}-\frac{1}{4 \pi \epsilon_{0}} \frac{2 e^{2}}{r_{1}}\right\}+\left\{-\frac{\hbar^{2}}{2 m} \nabla_{2}^{2}-\frac{1}{4 \pi \epsilon_{0}} \frac{2 e^{2}}{r_{2}}\right\}+\frac{1}{4 \pi \epsilon_{0}} \frac{e^{2}}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|}
$$

First neglect the e-e repulsion
(on page 299, Ch 7, we will improve on this)

The space-like portion of the wave function in general will be $\psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\psi_{n m m}\left(\mathbf{r}_{1}\right) \psi_{n^{\prime} l m^{\prime}}\left(\mathbf{r}_{2}\right)$. (before symmetrization):

$$
\begin{gathered}
E=4\left(E_{n}+E_{n^{\prime}}\right) \\
E_{n}=-\left[\frac{m}{2 \hbar^{2}}\left(\frac{2 e^{2}}{4 \pi \epsilon_{0}}\right)^{2}\right] \frac{1}{n^{2}}
\end{gathered}
$$

For ground state, we place both $\quad E_{n}=-\left[\frac{m}{2 \hbar^{2}}\left(\frac{2 e^{2}}{4 \pi \epsilon_{0}}\right)^{2}\right] \frac{1}{n^{2}}$ electrons at $n=1,1=0, m=0$.

$$
\psi_{0}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\psi_{100}\left(\mathbf{r}_{1}\right) \psi_{100}\left(\mathbf{r}_{2}\right)=\frac{8}{\pi a^{3}} e^{-2\left(r_{1}+r_{2}\right) / a}
$$

$$
E_{0}=8(-13.6 \mathrm{eV})=-109 \mathrm{eV}
$$

$$
\Leftrightarrow 4+4=2^{2}+2^{2}
$$

Rapidly inducing big energies!

The space portion is symmetric, thus the spin portion must be antisymmetric.

$$
\psi=\psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) \chi\left(\mathbf{s}_{1}, \mathbf{s}_{2}\right)=\frac{8}{\pi a^{3}} e^{-2\left(r_{1}+r_{2}\right) / a} \frac{1}{\sqrt{2}}\left(\uparrow_{1} \downarrow_{2}-\downarrow_{1} \uparrow_{2}\right)
$$

The cartoon version is:

Excited states?

$$
\begin{aligned}
& \substack { n=3 \\
\begin{subarray}{c}{n=1 \\
n=1{ n = 3 \\
\begin{subarray} { c } { n = 1 \\
n = 1 } } \\
{\substack{n=3 \\
n=2 \\
n=1}} \\
{\uparrow}
\end{aligned}
$$

Excited states? Two options ...

$$
\begin{aligned}
& \Psi_{\text {singlet }}=\psi_{S}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right) \chi_{A S}\left(\boldsymbol{S}_{1}, \boldsymbol{S}_{2}\right)= \\
& =\frac{1}{\sqrt{2}}\left[\psi_{100}\left(\boldsymbol{r}_{1}\right) \psi_{200}\left(\boldsymbol{r}_{2}\right)+\psi_{200}\left(\boldsymbol{r}_{1}\right) \psi_{100}\left(\boldsymbol{r}_{2}\right)\right] \quad \frac{1}{\sqrt{2}}\left(\uparrow_{1} \downarrow-\downarrow_{1} \uparrow_{2}\right) \\
& \Psi_{\text {triplet }}=\psi_{\text {As }}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right) \chi_{S}\left(\boldsymbol{S}_{1}, \boldsymbol{S}_{2}\right)=
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\sqrt{2}}\left[\psi_{100}\left(\boldsymbol{r}_{1}\right) \psi_{200}\left(\boldsymbol{r}_{2}\right)-\psi_{200}\left(\boldsymbol{r}_{1}\right) \psi_{100}\left(\boldsymbol{r}_{2}\right)\right] \frac{1}{\sqrt{2}}\left(\uparrow_{1} \downarrow_{2}+\downarrow_{1} \uparrow_{2}\right)
\end{aligned}
$$

If e-e neglected, then singlet and triplet are degenerate

If e-e is brought back, at least qualitatively, then the degeneracy is broken

Due to the effective "exchange forces", the AS space-like combination keeps the two electrons a bit further apart ... (for AS sector the exchange force is "repulsive"; for S sector is "attractive")

Then, the energy levels for two electrons is:

Real numbers from book

$$
n=1 \text { 乎- }
$$

Note: for real energy subtract 54.4 eV (1 eV ~ $1.60^{-19} \mathrm{~J}$)

Not in book

$Z=3$, Lithium

$Z=4$, Beryllium

$S=1 / 2$	
$L=0$	$\substack{n=3 \\ n=2 \\ n=2}$
$\downarrow \downarrow$	

$S=1 / 2$ $\mathrm{L}=1$

The excited states become complicated fast!

