Adding both terms appears to lead to a long expression

$$
E_{r}^{1}=-\frac{\left(E_{n}\right)^{2}}{2 m c^{2}}\left[\frac{4 n}{l+1 / 2}-3\right]+E_{\mathrm{so}}^{1}=\frac{\left(E_{n}\right)^{2}}{m c^{2}}\left\{\frac{n[j(j+1)-l(l+1)-3 / 4]}{l(l+1 / 2)(l+1)}\right\}
$$

Consider $\mathrm{j}=1+1 / 2$ first. Then $\mathrm{j}(\mathrm{j}+1)=(1+1 / 2)(1+3 / 2)$. Careful algebra (HW problem) leads to

$$
E_{\mathrm{fs}}^{1}=\frac{\left(E_{n}\right)^{2}}{2 m c^{2}}\left(3-\frac{4 n}{j+1 / 2}\right)
$$

Consider now $\mathrm{j}=\mathrm{l}-1 / 2$. Then $\mathrm{j}(\mathrm{j}+1)=(1-1 / 2)(1+1 / 2)$. Careful algebra (HW problem) leads to the same

$$
E_{\mathrm{fs}}^{1}=\frac{\left(E_{n}\right)^{2}}{2 m c^{2}}\left(3-\frac{4 n}{j+1 / 2}\right)
$$

In HW problem you will show that order $0+$ order 1 gives:
where

$$
E_{n j}=-\frac{13.6 \mathrm{eV}}{n^{2}}\left[1+\frac{\alpha^{2}}{n^{2}}\left(\frac{n}{j+1 / 2}-\frac{3}{4}\right)\right] \quad \begin{gathered}
\alpha \equiv \frac{e^{2}}{4 \pi \epsilon_{0} \hbar c} \cong \frac{1}{137.036} \\
E_{n}=-\left[\frac{m}{2 n^{2}}\left(\frac{e^{2}}{4 \pi \epsilon_{0}}\right)^{2}\right] \frac{1}{n^{2}}
\end{gathered}
$$

Originally 6 states because $I=1$
(3 states) and $s=1 / 2$ (2 states)

Originally 2 states because $1=0$ (1 state) and $s=1 / 2$ (2 states).

NOTE: this is for the H atom. For He and beyond the e-e repulsion plays a more important role than the fine structure.

Counting of states again:

If we consider the " p levels", they have angular momentum $\mathrm{l}=1$. The spin is $s=1 / 2$. Then, the total angular momentum j can be $1+1 / 2=3 / 2$ and $1-1 / 2=1 / 2$.

The original $1=1$ is 3 states $m_{1}=1,0,-1$. The original spin $s=1 / 2$ is 2 states $m_{s}=1 / 2,-1 / 2$. Total $=6$ states.

The $j=3 / 2$ is 4 states $m_{j}=3 / 2,1 / 2,-1 / 2,-3 / 2$. The $j=1 / 2$ is 2 states $m_{j}=1 / 2,-1 / 2$. Total $=6$ states. As expected, the original 6 degenerate states are simply mixed in a linear combination to become states with j sharply defined.

6.5 Hyperfine Splitting:

These are corrections to the H atom that are even much smaller than the fine structure corrections, yet they are very important.

$$
\mu_{e}=-\frac{e}{m_{e}} \mathbf{S}_{e} \quad \mu_{p}=\frac{g_{p} e}{2 m_{p}} \mathbf{S}_{p}
$$

The proton also has a spin, like the electron. The magnitude of the dipole moment is much smaller because of m_{p} in the denominator. Still μ_{p} is nonzero. g_{p} is ~ 5 because the proton is composed of 3 quarks.

Any dipole moment is felt like a magnetic field by the other spin, thus an interaction arises which for the $\mathrm{l}=0$ ground state is:

$$
E_{\mathrm{hf}}^{1}=\frac{\mu_{0} g_{p} e^{2}}{3 \pi m_{p} m_{e} a^{3}}\left\langle\mathbf{S}_{p} \cdot \mathbf{S}_{e}\right\rangle
$$

Similar to: $\mathbf{S} \cdot \mathbf{L}$

$$
E_{\mathrm{hf}}^{1}=\frac{4 g_{p} \hbar^{4}}{3 m_{p} m_{e}^{2} c^{2} a^{4}}\left\{\begin{array}{ll}
+1 / 4, & \text { (triplet): } \\
-3 / 4 . & \text { (singlet). }
\end{array} \quad \Delta E=\frac{4 g_{p} \hbar^{4}}{3 m_{p} m_{e}^{2} c^{2} a^{4}}=5.88 \times 10^{-6} \mathrm{eV}\right.
$$

NOTE: In HW you will show that the correction coming from the finite size of the nucleus is even smaller.

Spin flip transition

The 21-cm line is a "fingerprint" of hydrogen gas, which is 90\% of the gas between stars. The emitted radiation penetrates "dust" in space, that blocks visible light. The spiral arms of galaxies, made mostly of H, can be mapped studying this frequency.

Galaxy about $1 / 3$ size Milky Way.

