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6.5 Zeeman Effect:

Electron in an atom in the presence of a magnetic field. Before only 
“spin” S in a magnetic field was considered. Now we add the orbital 
angular momentum L because electron is orbiting the proton. 

If magnetic field is very small, then 
the fine structure constant must be 
considered as part of the H0 before 
adding magnetic field.

If magnetic field not too small, 
then the fine structure constant 
is neglected in H0 before adding 
magnetic field.

Bext vs    in

Missing 2 in spin is 
due to relativity.
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Fine structure is important. Good quantum 
numbers are (n, l, s, j, mj)

Consider magnetic field along z axis:

It can be shown that:

where the Bohr magneton 
is defined as:

Simple split linear with Bext: 
some levels up, others down.

Then:

Lande’ gJ factor

(1)
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Example: ground state has n=1, l=0, 
s=1/2, j=1/2, mj = ±1/2 (gJ=2)

Magnetic field dominates. Good quantum 
numbers are (n, l, s, ml, ms) because magnetic 
field is larger than fine structure correction.

Egs = 

(2)
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EXAMPLE:
n=2 states of H 
atom (8 total)

j=3/2, deg=4, 
l=1, s=1/2, j=l+s

j=1/2, deg=2, 
l=1, s=1/2, j=l-s 
or 
l=0 s=1/2

n=2 without fine 
structure 
correction has:

3 l=1 states 
where spin can 
go up or down 

and 1 l=0 state 
where spin can 
go up or down

ml=1 ms=1/2     +2

ml=1, ms=-1/2     0

ml+2ms

ml=-1 ms=-1/2   -2

ml=-1 ms=+1/2    0

ml=0, l=1, ms=+1/2     1

ml=0, l=1, ms=-1/2    -1

mj= 3/2

mj= 1/2

mj=-1/2

mj=-3/2

mj= 1/2
mj=-1/2

mj= 1/2

mj= -1/2

ml=0, l=0,  ms=-1/2   -1

ml=0, l=0, ms=+1/2    1
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Chapter 7: The variational principle

This is a common occurrence. Suppose you have a 
Hamiltonian that (i) cannot be solved exactly and (ii) where 
perturbation theory cannot be applied because there is no 
simple H0 and/or because there is no small H’. 

Then, what do we do? 

One possibility is to use the variational principle: it does 
not give you the exact answer but gives you an upper 
bound that is often sufficient. 

Select any wave function 
you wish. Call it Y. The 
claim is that always: 
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Although we do not know explicitly the eigenstates 
of H, because we cannot solve the problem 
exactly, we know they exist. 

Then, we can expand our proposed variational wave 
function in the complete basis of eigenstates: 

If Y is normalized, then: 
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Repeating with H included, we find: 

But the ground state has the lowest energy by definition: 

. Then: 

The variational principle is powerful, easy to use, and 
accurate if you have a good intuition on how the wave 
function should look like.  Problem: you do NOT know how 
close your result is compared to the exact result. You 
only know you are above. 
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Example 7.1:

Consider the 1D Harmonic Oscillator with H: 

Here we know the answer exactly, but we pretend we do not. 

As a “trial” wave function we will use a Gaussian 
exponential. Using Gaussians is very common, 
because the integrals are known. 

A is the normalization and b is called a “variational 
parameter” that we will optimize by minimizing the energy. 
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2

Normalization: 

Next we need the expectation 
value of the Hamiltonian: 

For the kinetic energy:

For the potential energy:
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If we introduce the “optimal b” into <H>, we obtain: 

Let us now “optimize” the “variational parameter” 

which is the exact result, by chance, in this simple 
example. In the vast majority of cases, you will not 
find the exact result. 

Adding kinetic and potential energy: 


