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Abstract: 

Carbon nanotubes have highly promising applications in future molecular electronics due to their  
unique electronic properties . This review begins with a brief introduction to  experimental facts of 
structural and electronic properties of carbon nanotubes. The next section focuses on electronic 
structures of single walled carbon nanotube using the tight-binding model. Following that, 
applications of both semiconducting and metalic carbon nanotubes are presented. Finally the future 
developments of carbon nanotubes in both academic research industrial applicatons are discussed.  

 
 
 

1. Introduction 
 
Carbon nanotubes are hollow cylinders composed of pure carbon with diameters of a few 
nanometers and lengths of many microns. A single-walled carbon nanotube (SWNT) may be 
conceived as a graphene, which is a single atomic layer  of graphite, rolled into a seamless 
cylinder, whileMulti-walled carbon nanotubes (MWNT) consist of several layers of rolled 
graphite. Both SWNT and MWNT have similar mechanical and electronic properties. 
Because of the geometrical simpleness of the SWNT, this paper will mainly focuse on 
SWNT. Using modern microscopes like TEM and AFM, detailed structures of carbon 
nanotubes can be observed in experiments (see Fig. 1). 
 
The remarkable electronic properties of carbon nanotubes stem largely from the electronic 
structure of graphene, from which these nanotubes are derived. Graphene is a zero-gap semi-
metal. While in most directions of the graphene sheet, energy gaps are not zero and electrons 
are not free to flow unless extra energy is provided, in certain special directions, energy gaps 
are zero and thus graphene displays the metallic property.  In the band structure of 
graphene,conduction band and valance band contact each other at discrete points in k-space.  
However, when the graphene is rolled up into the nanotube, the direction along the axis of 
the nanotube is selected in the graphene sheet. Depending on geometric relation between the 
rolling direction and primitive vectors of the graphene sheet, the produced nanotube can be 
either metal or semiconductor. Since both metals and semiconductors can be made from the 
same all-carbon system, nanotubes are ideal candidates for molecular electronics 
technologies.  
 
The nanotube axis direction relative to the graphene is denoted by a pair of integers (n, m) [1]. 
Depending on the appearance of a belt of carbon bonds along the peripheral of the nanotube 
cross section, the nanotube is classified into either an armchair (n = m), or zigzag (n = 0 or m 
= 0, but not both zero), or chiral (any other n and m) structure. All armchair SWNTs are 
metals; those with n – m = 3k, where k is a nonzero integer, are semiconductors with a tiny 
band gap; and all others are semiconductors with a band gap that inversely depends on the 
nanotube diameter [1]. Figs. 1 (A),(B),(C) show the three different types of rolling-up pattern 
from a graphene sheet.   

 



 
Fig. 1: 
 
Schematic illustrations of the structures of 
(A) armchair, (B) zigzag, and( C) chiral 
SWNTs. 
Projections normal to the tube axis 
andperspective views along the tube axis are 
on the top and bottom, respectively.  
 
(D) Tunneling electron microscope image [2] 
showing the helical structure of a 1.3-nm-
diameter chiral SWNT.  
 
(E) Transmission electron microscope 
( TEM) image of a MWNT containing a 
concentrically nestedarray of nine SWNTs.  
 
(F) TEM micrograph [3]  showing the 
lateral packing of 1.4-nm-diameter SWNTs 
in a bundle.  
 
(G) Scanning electron microscope (SEM) 
image of an array of MWNTs grown as a 
nanotube forest. [4] 
 
 
 

 
 
 
 

 
Fig. 2: 
(a) a1 and a2 are the lattice vectors of graphene. |a1| = |a2| = √3 a, where a is the carbon–carbon bond length. 
There are two atoms per unit cell shown by A and B. SWNTs are equivalent to cutting a strip in the graphene 
sheet (blue) and rolling them up such that each carbon atoms is bonded to its three nearest neighbours. The 
creation of a (n, 0) zigzag nanotube is shown.  
(b) Creation of a (n, n) armchair nanotube.  
(c) A (n,m) chiral nanotube. 
(d) The bonding structure of a nanotube. The n = 2 quantum number of carbon has four electrons. Three of 
these electrons are bonded to its three nearest neighbours by sp2 bonding, in a manner similar to graphene. 
The fourth electron is a π orbital perpendicular to the cylindrical surface. [5] 

 



2.    Electronic structures of carbon nanotubes 
 

Each carbon atom in the hexagonal lattice on a 2D graphene sheet possesses six valent 
electrons, among which are  three 2sp2 electrons and one 2p electron. The three 22sp  
electrons form the three bonds in the plane of the graphene sheet, leaving an unsaturated π  
orbital [5] (Fig.  2(d)). These π  orbitals, perpendicular to the graphene sheet and thus the 
nanotube surface when the graphene sheet is rolled, form a delocalized  network on the 
surface of the nanotube, responsible for its electronic properties. 
 
First, it is beneficial to introduce the secular equation of tight-binding model, which is 
described below, 
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here jΦ  denotes the atom wavefunction of position  j  which is interested in. 
  
A carbon atom at position srG  has an unsaturated 2p orbital described by the wave function 
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Gχ . In the nearest neighbour approach of tight-binding model, the interaction between 
orbitals on different atoms vanishes unless the atoms are nearest neighbours. Mathematically, 
this can be written as                  
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here γ  is the transfer integral constant. 
 
To calculate the electronic structure, the Bloch wavefunction for each of the sublattices is 
constructed as 
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Plug in those geometrical values and one can get, 
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Then the explicit forms for the transfer and overlap integral matrices---- Ĥ and Ŝ ---- can be 
written as: 
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Note that Ŝ  is written as unity matrix due to the none-overlaping approximation which is 



made before the calculation. 
 

 
Fig3:  
Part of the unit cell and extended Brillouin zon of an armchair 
carbon nanotube. 

iaG  and 
ib
G

 are unit vectors and reciprocal 

lattice vectors of two-dimensional graphite, respectively. In the 
figure, the translational vector T

G
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G . 

  
Solving the secular equation ˆˆdet( ) 0H ES− =  and using Ĥ and Ŝ as given above, the 

eigen values kE  are abtainedas a function of k
G

and ( )w k
G
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It we use the parameter 2 0pε = , the dispersion relation becomes 
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which is pictured in Fig. 3. In the picture, we can see the valence band and conduction band 
contact at six points at the corners of the Brillouin zone. 
 
A more generalized calculation with an overlapping parameter t yields the following 
despersion function: 

  2 ( )
( )

1 ( )
p tw k

E k
w k

ε
γ
±

=
±

G
G

G  with 
2 23( ) ( ) 1 4cos cos 4cos

2 2 2
y yx k a k ak aw k f k= = + +

G G
. 

                                                                                            
(2.9) 

Fig. 4 pictures this dispersion behavior using t 3.033eV= − and 0.129eVγ = in order to 
reproduce the first principles calculation of the graphite energy bands[6]. 
 



 
Fig. 4: 
The energy dispersion relation for 2D graphene with non-zero overlap 
are shown throughout the whole region of the Brillouin zone. The inset 
shows the energy dispersion along the high symmetry directions of the 
triangle Γ  M K. [7] 
 
 

To obtain the electronic structure of CNTs, we start from the band structure of graphene and 
quantize the wavevector in the circumferential direction. The simplist case to consider are 
the nanotubes having the highest symmetry, we maily focuses on an armchair nanotube (see 
Fig. 2 for definition of armchair structure). The appropriate periodic boundary condition 
used to abtain the energy eigenvalues is:  

              ,3 2 ,x qn k a qπ=                 ( 1, , 2 ).q n= …    
             (with n to be the chiral integer of armchair nanotubes)           (2.10) 

 
 

 
Fig. 3: 
electronic structure calculated within a non-overlapping tight-binding model. [5] 

 
 



 
Fig. 4: 
Illustration of allowed wavevector lines leading to semiconducting and metallic 
CNTs and examples of bandstructures for semiconducting and metallic zigzag 
CNTs. [5] 

Plug the above equation into Equation (2.9) gives the energy dispersion relation ( )a
qE k for 

the armchair nanotube, 
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A more detailed analysis of the )(kE relations for chiral nanotubes is generally given by [8] 
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where k is thewavevector in the axial direction, ))2/3(3( mnaCx += and .)2/3( maC y =  
Bandstructures for semiconducting and metallic CNTs calculated from this expression are 
shown in Fig. 4. 
 
As discussed above, the condition for CNTs to be metallic is that some of the allowed lines  
cross one of the Fermi points of graphene. This leads to the condition  where I is an integer. 
Nanotubes for which this condition does not hold are semiconducting. Furthermore, it can be 
shown that the bandgap of semiconducting nanotubes decreases  with an increase in the 
diameter. The relationship between the bandgap and diameter [9,10] can be obtained by 
finding the two lines that come closest to a graphene Fermi point, giving a bandgap, 

RaEg /~ γ  , as shown in Fig. 4. 
 

Finally, it is important to note that there are some deviations in the electronic properties of 
nanotubes from the simple-orbital graphene picture described above, due to curvature. As a 



result of curvature, (i) the hopping integrals describing the three bonds between nearest 
neighbours are not identical and (ii)  hybridization and charge self-consistency become 
important. Since curvature becomes larger with a decrease in the nanotube diameter, 
deviations from the simple orbital graphene picture become more distinct in small diameter 
nanotubes. Nanotubes satisfying Imn 3=−  develop a small bandgap induced by the 
curvature and are hence semi-metallic. Armchair nanotubes are an exception because of their 
special symmetry, and they remain metallic for all diameters. The bandgap of semi-metallic 
nanotubes is small and varies inversely as the square of nanotube diameter. For example, 
while a semiconducting nanotube with a diameter of 10Å has a bandgap of 1 eV, a semi-
metallic nanotube with a comparable diameter has a bandgap of only 40 meV. In graphene, 
hybridization between and  orbitals is absent. In contrast, the curvature of a nanotube 
induces  hybridization and the resulting in changes in long-range interactions. While the 
influence of hybridization in affecting the electronic properties of large diameter nanotubes is 
negligible, small diameter nanotubes are significantly affected. [9] found that while tight-
binding calculations predict small diameter (4,0) and (5,0) zigzag nanotubes to be 
semiconducting with bandgaps exceeding 1 eV, DFT–LDA calculations show that they are 
semi-metallic. Similarly, while tight-binding calculations predict the (6,0) zigzag nanotube to 
be semi-metallic with a bandgap of approximately 200 meV, DFT–LDA calculations indicate 
that they are metallic [11,12]. Overall, small diameter nanotubes require a more careful 
treatment beyond the simple tight-binding graphene model. 
 
3.  Semiconducting CNTs as Field effect transistors 
 
Semiconducting nanotubes can work as transistors.The tube can be “turned on” – i.e. made to 
conduct – by applying a negative bias to the gate, and “turned off “ with a positive bias (Fig. 
3a). A negative bias induces holes on the tube and makes it conductive. Positive biases, on 
the other hand, depletes the holes and decrease the conductance. Indeed, the resistance of the 
“off” state can be more than a million times greater than the “on” state. This behaviour is 

analogous to that of a p-type metal-oxide-
silicon field effect transistor (MOSFET), 
except that the nanotube replaces silicon as the 
material that hosts the charge carriers. 
 
The reason why carbon nanotube appears as p-
type instead of intrinsic semiconductor is that 
the metal electrodes "dope" the tube to be p-
type. In other words, they remove electrons 
from the tube, leaving the remaining mobile 
holes responsible for conduction. Indeed, 
recent experiments show that changing a 
tube’s chemical environment can change the 
level of doping, significantly changing the 
voltage at which the device is turned on [15]. 
More dramatically, tubes can even be doped n-
type by exposing the tube to elements such as 
potassium that donates electrons to the tube. 
 

Fig. 5:  
(a) The conductance of a semiconducting carbon nanotubes as a function of gate voltage.  
(b) The potential profiles seen by these holes due to disorder in the structure of the nanotube and imperfect contacts 
between the electrodes and the tube.  
(c) The tip of a scanning probe microscope can be used to map the barriers to conduction [14] 



The semiconducting device of the type shown in Fig. 5 is, in many ways, truly remarkable. 
First, it is only one nanometre wide. While much work has been done to create ultra-small 
semiconducting devices from bulk semiconductors, such devices have always been plagued 
by “surface states” --- electronic states that arise when a three-dimensional crystal is 
interrupted by a surface. These surface states generally degrade the operating properties of 
the device, and controlling them is one of the key technological challenges to device 
miniaturization. Nanotubes solve the surface-state problem in an elegant fashion. First, they 
are inherently 2D materials, so the problem of a 3D lattice meeting a surface does not exist. 
Second, they avoid the problem of edges because of the seamlessly wrapped graphene sheet. 

 

Fig. 6:  
Schematic representation of a top-gated CNTFET. 

 
Carbon nanotube field effect transistor (CNTFET) is shown in Fig. 6. These tiny devices will 
probably just be the first in a host of new semiconducting-device structures based on carbon 
nanotubes. Other devices, such as nanotube p–n junction diodes and bipolar transistors, have 
been discussed theoretically and are likely to be realized soon. 
 
4.  Metallic CNTs as 1D Metal 

 

 
Fig. 7: 
Comparison between Fermi liquid and Luttinger liquid 

 
In dramatic contrast to semiconducting nanotubes, the conductance of some other nanotubes 
near room temperature is not noticeably affected by the addition of a few carriers.This 
behaviour is typical of metals, which have a large number of carriers and have conducting 
properties that are not significantly affected by the addition of a few more carriers. The 
conductance of these metallic nanotubes is also much larger than that of the semiconducting-



nanotube devices, as expected. Indeed, a number of groups have made tubes with 
conductances that are between 25% and 50% of the value of 4e²/h that has been predicted for 
perfectly conducting ballistic nanotubes. This result indicates that electrons can travel for 
distances of several microns down a tube before they are scattered. Several measurements 
support this conclusion[16]. These measurements also show that the contact resistance 
between the tube and the electrodes can be substantial, just as it is with semiconducting tubes. 

 
Further evidence for the near-perfect nature of these tubes comes from the way they behave 
at low temperatures. The conductance is observed to oscillate as a function of gate voltage. 
These “Coulomb oscillations” occur each time an additional electron is added to the nanotube. 
In essence, the tube acts like a long box for electrons, often called a “quantum dot” [17].The 
electronic and magnetic properties of these nanotube quantum dots reveal a great deal about 
the behaviour of electrons in nanotubes. For example, the fact that the oscillations are quite 
regular and periodic indicates that the electronic states are extended along the entire length of 
the tube. If, however, there was significant scattering in the tube, the states would become 
localized and the Coulomb oscillations would be less regular. Nanotube quantum dots that 
are as long as 10 µm have been found to exhibit these well-ordered oscillations, again 
indicating that the mean free path can be very long. 

 
The experiments described above indicate that electrons can travel for long distances in 
nanotubes without being backscattered. This is in striking contrast to the behaviour observed 
in traditional metals like copper, in which scattering lengths from lattice vibrations are 
typically only several nanometres at room temperature. The main reason for this remarkable 
difference is that an electron in a 1-D system (like a nanotube) can only scatter by completely 
reversing its direction, whereas electrons in a 2D or 3D material can scatter by simply 
changing direction through a tiny angle. Phonons  do not have enough momentum to 
reverse the direction of a speeding electron in a 1-D nanotube. They therefore do not 
influence its conductance, at least not at low voltages. Fig. 7 shows this contrast between 
normal metal and 1D metallic nanotube. 

 
Experiments clearly demonstrate that interacting 1-D metals behave very differently to 2-D 
and 3-D metals.This is perhaps not so surprising – to use a traffic analogy, car–car 
interactions are much more important on a one-lane highway than they are in a 2-D parking 
lot,where a car can move more-or-less independently of the other cars. What is surprising, 
however, is how long it took before these predictions were tested in detail. While prbes, 
sucevious measurements of other systems had shown evidence for Luttinger behaviour, 
nanotubes represent perhaps the clearest and most straightforward realization of Luttinger-
liquid physics to date. 

 
5. Outlook: Noval Devices composed of 1D-Geometric Electronics 

 
New devices can be created by the intersection of two nanotubes, such as a metallic tube 
crossing over a semiconducting tube (Fig. 8). The metallic tube locally depletes the holes in 
the underlying p-type semiconducting tube. This means that an electron traversing the 
semiconducing tube must overcome the barrier created by this metal tube. Biasing one end of 
the semiconducting tube relative to the metal tube leads to rectigying behaviour. In other 
words, the barrier is overcome is one bias direction, but not in the other. This structure is just 
one of many possibilities for nanotube devices waiting to be explored. 



 
Fig. 8: 
Illustrations for a noval electronic device "rectifier" consists of a semiconducting 
and a metallic carbon nanotube. [17] 

 
Many commercial applications have been proposed, from molecular electronic devices to 
sensors. Whether these can be realized is more difficult to assess [18]. If these real-world 
applications of nanotubes are achieved, we still need to find out ways of successfully 
integrate them into existing microelectronic systems . But if we manage to develop the 
technology to fabricate nanotubes of a particular type, length and diameter in a controlled 
fashion – and to incorporate the tubes into lithographic circuits at particular places with 
efficiencies approaching 100%, then only the sky is the limit. While this is a challenging goal, 
there appears to be no fundamental barriers for achieving it. A proper marriage of physics, 
chemistry and electrical engineering may be up to the task. Electronics may start to follow 
the way of biology and use the carbon atom as its backbone. 
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