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Molecular magnets are finite clusters of spin that interact in different ways to produce an overall
magnetism in the cluster. In this paper, molecular magnets will be introduced, a clear description of
them will be discussed, as well as, why they are important in science, what experimental techniques
help determine them and their structure, and the theoretical background in how they are modeled.

I. INTRODUCTION TO MOLECULAR

MAGNETS

Every child learns about magnetism when they are

young. This is usually the typical bar magnetism that

kids see or the effects of magnetic field on particles as in

the Aurora Borealis. However, magnetism has a much

deeper meaning to scientists that study them. Mag-

netism was known and mentioned in literature as far back

as the 4th century BC and has since grown into a major

area of science.1

In the past couple of decades, molecular magnetism

has caught the attention of condensed matter scientists

because of the possible technological and industurial ap-

plications. The technology arena is always looking for

new materials to expand the current demand on data

FIG. 1: The structure of Ni4: A molecular magnet that con-
sists of four spin-1 Ni ions.5

FIG. 2: Schematic of the different types of magnetic
coupling.3

storage and computing. With the possibility of using

spin flips for binary systems, or an even more complex

number system, quantum computing and molecular data

storage gives molecular magnets a possibility to move

technology forward.2

Most magnets the people are familiar with are the

kinds that are metallic lattices that contain an overall

magnetism or are in extended ordered systems.3,4 While

these types of magnets are important and merit mention,

the topic of this paper is molecular magnets. Molecular

magnets typically contain isolated clusters of spins that

interact in various ways. Each of the identical molec-

ular units can contain as few as two and up to several

dozen spin ions.3 Figure 1 shows the molecular magnet

of Ni4, where there exist an isolated cluster of four spin-1

Ni ions.5 It should be noted that molecular magnets do

not have to be isolated molecules, they can be lattices

of atoms with isolated magnetic structure. While the
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TABLE I: Some Examples of Small S = 1/2 Clusters and Molecular Magnets.26

Material Spin System Ground State Stot Refs.

VO(HPO4)·0.5H2O dimer 0 9–11

Cu3(O2C16H23)6 · 1.2C6H12 symmetric trimer 1/2 12,13

Na9[Cu3]·26H2O1 symmetric trimer 1/2 14

[Cu3(cpse)3(H2O)3] · 8.5H2O symmetric trimer 1/2 15

(CN3H6)4Na2[V6]·14H2O2 isosceles trimer 1/2 16

Na6[V6]·18H2O2 general trimer 1/2 16

K6[V15As6O42(H2O)]·8H2O symmetric trimer 1/2 17–21

NaCuAsO4 linear tetramer 0 23,24

(NHEt3)[V12As8O40(H2O)]·H2O. rectangular tetramer 0 22

K7Na[Cu4]·5.5H2O3 distorted tetramer 1 14

a[Cu3]=[Cu3Na3(H2O)9(α-AsW9O33)2]
b[V6]=[H4V6O8(PO4)4((OCH2)3CCH2OH)2]

c[Cu4]=[Cu4K2(H2O)6(α-AsW9O33)2]

more commonly known molecular magnets of Mn12
6 and

Fe8
7 usually take spotlight due to their size and complex-

ity, it is important to show that the arena on molecular

magnets is large consisting of many different types of ma-

terials. Table I shows some examples of spin 1/2 molec-

ular magnets. The main point to molecular magnets is

that, unlike traditional magnets, they do not contain ex-

tended long range magnetic ordering. This is important

to note because of the fundemental difference between

long range interactions and finite clusters that have local

interactions.5 The local interactions provide discrete en-

ergy level excitations instead of the continuum of states

provided by long range order. While theory defines an

isolated cluster as having no interaction between clus-

ters, it is important to recognize that in real systems can

have weak or moderate extended interactions between

molecules. These different types of local and long range

inteactions co-existing can be distingushed through the

use of multiple experimental techniques.

Figure 2 shows the types of magnetic coupling.3 While

figure 2 typically refers to long range systems, the types

are the same for clusters. The magnetic coupling can

be described as either disordered or ordered. Disordered

coupling is called paramagnetism and consists of ion clus-

ters that have random spin direction. Ordered means

that there is a specific pattern to way the spins are ori-

ented. Within the ordered category, there is ferromag-

netism, antiferromagnetism, and ferrimagnetism. Ferro-

magnetism consists of all spins aligned in the same di-

rection, while antiferromagnetism has the spins aligned

in opposite directions. Antiferromagnets typically give a

total spin ground state of 0. Ferrimagnetism is when you

have antiferromagnetism with different strength spins

which ends up giving a total net spin to the material.

In molecular magnets, magnetic ordering tends to be de-

scribed as either completely antiferromagnetic, ferromag-

netic, or combinations of the two, where some ions are

antiferromagnetically aligned to one ion and ferromag-

netically aligned to another. This tends to cause frustra-

tion in the system.

In molecular magnets, the theory behind the interac-

tions has been well developed. The main problem is that,

with molecular magnets, there are different ways for the

systems to couple. However, the interactions between

ions can usually be described by local nearest neighbor

coupling in the Heisenberg model.8 This allows for most

systems to be solved numerically. The analytical limit is

held by the small spin clusters of a hand full of ions with

low spin. Analytical results of small clusters can reveal

trends and patterns that can help understand the larger
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spin clusters. Once the amount of spin and the number

of ions increases, the Hilbert space becomes too large to

solve analytically. The Heisenberg model is usually pre-

ferred over the Hubbard model since there are no signif-

icant long range interactions in molecular magnets.29,30

The Heisenberg model and the different interactions will

be discussed in detail later.

Once you have a theory behind the system of inter-

est, it is necessary to use experimental techniques to

test these interactions. Magnetism can be determined

through a number of experimental techniques. These

techniques range from bulk measurements (magnetiza-

tion, magnetic susceptibility, and heat capacity) to mi-

croscopic measurements (inelastic neutron scattering and

infrared and Raman spectroscopy). The use of both bulk

and microscopic techniques can help clarify the types of

interactions. To fully understand the magnetism in a

molecular magnet, as well as, fully describe the interac-

tion, it is necessary to use these methods to compliment

each other.

II. MOLECULAR MAGNETS - THEORY

A. Heisenberg Hamiltonian

As mentioned earlier, molecular magnets can usually

be described with a Heisenberg model. The isotropic

Heisenberg Hamiltonian is given by

H =
∑

<ij>

Jij ~Si · ~Sj , (1)

where Jij is the magnetic interaction between the spins

i and j. In this Hamiltonian, a positive J refers to an

antiferromagnetic interaction and a negative J refers to

a ferromagnetic interaction.8,26 Eventhough this is the

more common Hamiltonian used to model systems, it is

important to expand the Heisenberg Hamiltonian to in-

corporate different interactions as well. The expansion

can be shown as

H = Hiso + (Hsym +Hantisym)aniso +HZee

where each term is described in spin operator terms as

H =
∑

<ij>

(

Jij ~Si · ~Sj + ~Si · Dij · ~Sj + dij
~Si ∧ ~Sj

)

+

gµBB ·
∑

i

~Si (2)

Here, the Heisenberg Hamiltonian is expanded into

four main parts: isotropic, symmetric anisotropic, anti-

symmetric anisotropic, and Zeeman terms, respectively.8

This allows for the detailed modelling of most spin config-

urations. The < ij > means a sum over all nearest neigh-

bors. This Hamiltonian can be expanded to next nearest

neighbor and so on. The basis of the Heisenberg model

is the treatment of spin as a vector that can be coupled

in all directions. The isotropic term represents the inter-

action where all components are the same in a rotation

of coordinate system.5 With this, the anisotropic terms

have interactions with different components. Anisotropy

can be either symmetric or antisymmetric providing a

zero-field splitting of the isotropic magnetic levels. The

symmetric case arises from dipolar interactions, provided

that the two ions are symmetry related, where Dij is both

symmetric and traceless. The antisymmetric anisotropic

term comes from local spin-orbit coupling and is de-

scribed by Dzyaloshinski and Moriya as a cross product

of the spin operators. The final term is the Zeeman mag-

netic term. This provides a perturbation of the Hamil-

tonian to relate the splitting of the energy levels with

magnetic field.
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B. Ising and XY

The Heisenberg Hamiltonian can be simplified in many

ways to describe the systems needed. In the previous

case, there was an assumption that the local ground state

of the magnetic centers was an orbital singlet without

considering the first-order angular momentum.8 When

first-order angular momentum needs to be considered the

Hamiltonian needs to be simplified to the following

H =
∑

ij

Jij

(

α~Six · ~Sjx + β~Siy · ~Sjy + γ~Siz · ~Sjz
)

(3)

This general expression introduces the provides limiting

situations, where

α = β = γ = 1 (Heisenberg)

α = β = 0 and γ = 1 (Ising)

α = β = 1 and γ = 0 (XY)

The Ising and XY models are typically useful to describe

effective local spins at low temperatures. Most Ising and

XY models have been used to describe chains of ions.8

C. Dimensionality

This a quick note on the dimensionality of molecu-

lar magnets. The Hilbert space of the Hamiltonians is

clearly dependent on the number of spins and will as the

spin quantum number of the ions. The dimensions of the

Hilbert space can be determined by

dim(H) =

N
∏

1

2Si + 1 (4)

where there is no spin symmetry present in the system.31

If the system is spin symmetric then the dimensionality

can be described as

dim(H) = (2Si + 1)N (5)

where N is the number of ions.31 This means that if you

have two spin-1/2 ions interacting, then the dimensions

of the Hilbert space are

dim(H) = (2(1/2) + 1)2 = 4 (6)

which is pretty nice. However, if you consider 5 spin-1/2

or spin-3/2 ions, then the Hilbert space increases

dim(H) = (2(1/2) + 1)5 = 32 (7)

for spin-1/2 ions and

dim(H) = (2(3/2) + 1)5 = 1024 (8)

for spin-3/2 ions. Now if we examine one of the more

popular molecular magnets, Mn12 (4 spin-3/2 ions and 8

spin-2 ions), you find it has a dimentionality of

dim(H) = (2(3/2) + 1)4 ∗ (2(2) + 1)8 = 1 x 108. (9)

It is clear that the Hilbert space of Mn12 is outside the

analytical range. This dimensionality helps determine

whether the system can be determined analytically or nu-

merically. The analytical limit is not a finely defined line.

It depends on the diagonalization of the Hilbert space.

If you have a nice isotropic Hamiltonian with equal in-

teractions everywhere, then the limit in dimensionality is

quite high. However, adding different interactions as well

as increasing spin quantum numbers greatly complicates

the exact analytical determination of the Hamiltonian.

When the Hilbert space is too large to be solved ana-

lytically or diagonalized exactly, numerical methods must

be applied. Some of the numerical methods are projec-

tion, the Lanczos method and DMRG. Projection is a

simple method that is based on multiple applications of
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FIG. 3: Magnetization of Ni4 from 0 to 60 T. The black line is
the experimental data and the red and green lines correspond
to theoretical predictions to the spin-1 tetramer model. Red
consists of a constant interaction and green introduces a field
dependent interaction.5

the Hamiltonian on random trail states. The Lanczos

method generates an orthonormal system that creates

an operator that is tridiagonal. DMRG is a technique

that divides that system into multiple blocks and then

reduces the matrix accordingly.

III. EXPERIMENTAL TECHNIQUES

Now that a basic introduction to the theoretical mod-

els for molecular magnets, it is important to give some

introduction to the experimental techniques that help de-

termine the magnetism in molecular magnets.

A. Bulk Quantities

The bulk quantities are properties of the material or

system as a whole. The measurements can not discrim-

inate between different interactions, because it reports

the measurements of the magnetic moment of the sys-

tem. This are typically thermodynamic properties.

1. Magnetization

Magnetization is a bulk experimental technique that

examines the overall magnetic moment of a material as

a function of magnetic field.29,30 In figure 3, the mag-

netization of a spin-1 Ni tetramer as compared to the

magnetization data. By studying the magnetization of a

molecular magnet, it is possible to determine the inter-

action strength in the material. The steps that appear in

the magnetization are spin flip transition within the ma-

terial as magnetic field is increased. For example, in the

tetramer in figure 3, there are four steps corresponding

to different to the four spin states in Ni4. Since Ni4 is a

spin-1 tetramer, it has spin states that have total spin 0,

1, 2, 3, and 4.5 Therefore, the magnetization examines

these transitions directly. It is also needed to be men-

tioned that the red line is a prediction for the a constant

interaction, which does not seem to correlate with the

black line of the data. This is due to the fact that the

interaction is dependent on field. The green line shows

the corrected magnetization with a field dependent inter-

action.

Molar magnetization can be defined as

M =
NA

β

∂ lnZ

∂ H
(10)

where NA is Avogadro’s number, β is 1
kBT

,kB is Boltz-

man’s constant, T is temperature, and H is the applied

field. Z is defined as the partition function and will make

its way into the discussion of the other bulk quantities.

The partition function is given by

Z =

N
∑

i=1

e−βEi =
∑

Ei

(2Stot + 1) e−βEi , (11)

where Ei corresponds to the energy levels of the system.
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TABLE II: Specific Heats for Small Spin 1/2 Cluster26a

Spin System C/kB

Dimer 3(βJ)2eβJ/(3 + eβJ)2

Symmetric Trimer 9
4 (βJ)

2e
3

2
βJ/

(

1 + e
3

2
βJ
)2

Isosceles Trimer 1
2 (βJ)

2
(

2(1− α)2e(1+2α)βJ + (2 + α)2e(1+
1

2
α)βJ + 9α2e

3

2
αβJ

)

/
(

2 + e
3

2
αβJ + e(1+

1

2
α)βJ

)2

General Trimer 1
16 (βJ)

2e
1

2
(1+αs)βJ

(

f2
0 e

1

2
(1+αs)βJ +

(

4(1 + αs)
2 + f2

0

)

cosh(f0βJ/4) + 4f0(1 + αs) sinh(f0βJ/4)
)

/
(

1 + e
1

2
(1+αs)βJ cosh(f0βJ/4)

)2

Tetrahedron 18(βJ)2
(

10e2βJ + 5e3βJ + e5βJ
)

/
(

5 + 9e2βJ + 2e3βJ
)2

a This table uses the abbreviation f0 =
√

(2− αs)2 + 3α2
d.

2. Specific Heat Capacity

Heat capacity is the quantity of a material to store

heat as temperature is changed. In figure 4, the mag-

netic contribution to the specific heat of a general spin

FIG. 4: The magnetic contribution to the specific heat of a
spin dimer (dimensionless units).26

1/2 dimer is shown. Here, it is clear that the specific

heat has a transition peak. This peak corresponds to

either a cooperative phase transition in the material or

non-cooperative anomaly depending on the magnetic in-

teraction acting on the spins. The heat capacity is given

by

C = kBβ
2 ∂

2 ln(Z)

∂β2
. (12)

where the units are typically given in K/(erg mol).8,26

Table II shows the analytical results for small spin 1/2

clusters. As the size of the cluster increases, it is clear to

see that the calculations become more complex.

3. Magnetic Susceptibility

Magnetic susceptibility is defined as the change in mag-

netization over the change in magnetic field. If a weak

field is applied, then the magnetic susceptibility is in-
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TABLE III: Magnetic Susceptibilities for Small Spin 1/2 Clusters26a

Spin System χ/(gµB)
2

Dimer 2β/
(

3 + eβJ
)

Symmetric Trimer 1
4β
(

5 + e
3

2
βJ
)

/
(

1 + e
3

2
βJ
)

Isosceles Trimer 1
4β
(

10 + e
3

2
αβJ + e(1+

1

2
α)βJ

)

/
(

2 + e
3

2
αβJ + e(1+

1

2
α)βJ

)

General Trimer 1
4β
(

5 + e
1

2
(1+αs)βJ cosh(f0βJ/4)

)

/
(

1 + e
1

2
(1+αs)βJ cosh(f0βJ/4)

)

Tetrahedron 2β
(

5 + 3e2βJ
)

/
(

5 + 9e2βJ + 2e3βJ
)

Rectangular Tetramer 2β
(

5 + eβJ + eαβJ + e(1+α)βJ
)

/
(

5 + 3eβJ + 3eαβJ + 3e(1+α)βJ + 2e(1+α)βJ cosh(f1βJ/2)
)

Linear Tetramer 2β
(

5 + eβJ + 2e
1

2
(1+α)βJ cosh(f3βJ/2)

)

/
(

5 + 3eβJ + 2e(1+
1

2
α)βJ cosh(f2βJ) + 6e

1

2
(1+α)βJ cosh(f3βJ/2)

)

a This table uses the abbreviations f0 =
√

(2− αs)2 + 3α2
d, f1 =

√
1− α+ α2, f2 =

√

1− α/2 + α2/4,

f3 =
√
1 + α2.

dependent of field. Therefore, it is possible to exam-

ine magnetic susceptibility as a function of temperature

which can be determined by

χ =
β

Z

N
∑

i=1

(M2
z )i e

−βEi

=
1

3
(gµB)

2 β

Z

∑

Ei

(2Stot + 1) (Stot + 1) Stot e
−βEi , (13)

where the sum i = 1 . . . N is over all N independent

energy eigenstates (including magnetic substates), the

sum
∑

Ei
is over energy levels only, Mz = mgµB where

m = Sz
tot/~ is the integral or half-integral magnetic quan-

tum number, and g is the electron g-factor.8 This is typ-

ically referred to as the Van Vleck equation.8

Figure 5 shows the magnetic susceptibility of a gen-

eral spin-1/2 dimer. Through a fit of the magnetic sus-

ceptibility, it is possible to extract the magnetic inter-

actions for a particular models. In figure 5, the mag-

netic susceptibility is shown in dimensionless units, where

as susceptibility is usually found in cm3 per mole. The

units of susceptibility have been a point of confusion in

the literature. However, since the units are erg/G2 and

E =
∫

(B · H dV ), the units can be converted to cm3.

Some people have used the unit of emu, but this unit

is for magnetic moment. Table III shows the analytical

results for small 1/2 clusters.26 Similiar to the heat ca-

pacity, the table of susceptilibities demonstrates how the
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complexity of the calculations become as the cluster size

grows.

B. Microscopic Techniques

Microscopic techniques are quantities that can measure

spin transitions and interactions directly. These tech-

niques are able to distingush between different interac-

tions and can distinctly show the difference between long

range magnetic order and local excitations.

1. Inelastic Neutron Scattering

Inelastic neutron scattering is a very useful tool for

examining magnetic interactions. Since the neutron has

spin with no charge (unlike an electron), the neutron is

able to penetrate the electron cloud and scatter directly

off magnetic interactions. Inelastic neutron scattering is

slightly more complex than the bulk quantities.28

In “spin-only” magnetic neutron scattering at zero

temperature, the differential cross section for the inelastic

scattering of an incident neutron from a magnetic system

in an initial state |Ψi〉, with momentum transfer ~~q and

energy transfer ~ω, is proportional to the neutron scat-

FIG. 5: The magnetic susceptibility of a spin dimer (dimen-
sionless units).26

FIG. 6: Experimental data and theoretical predictions for
Na3RuO4.

27

tering structure factor tensor

Sba(~q, ω) =

∫ ∞

−∞

dt

2π

∑

~xi,~xj

ei~q·(~xi−~xj)+iωt〈Ψi|S†
b(x̃j, t)Sa(x̃i, 0)|Ψi〉 .

(14)

The site sums in Eq.(14) run over all magnetic ions in

one unit cell, and a, b are the spatial indices of the spin

operators.

For transitions between discrete energy levels, the time

integral gives a trivial delta function δ(Ef−Ei−~ω) in the

energy transfer, so it is useful to specialize to an “exclu-

sive structure factor” for the excitation of states within

a specific magnetic multiplet (generically |Ψf (λf )〉) from
the given initial state |Ψi〉,

S
(fi)
ba (~q ) =

∑

λf

〈Ψi|V †
b |Ψf (λf )〉 〈Ψf (λf )|Va|Ψi〉 , (15)

where the vector Va(~q ) is a sum of spin operators over

all magnetic ions in a unit cell,

Va =
∑

~xi

Sa(~xi) e
i~q·~xi . (16)
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For a rotationally invariant magnetic interaction and

an Stot = 0 initial state (as is often encountered in

T=0 inelastic scattering from an antiferromagnet), only

Stot = 1 final states are excited, and S
(fi)
ba (~q ) ∝ δab.

In this case we may define a scalar neutron scattering

structure factor S(~q ) by

S
(fi)
ba (~q ) = δab S(~q ) . (17)

The results given above apply to neutron scattering

from single crystals. To interpret neutron experiments

on powder samples, we require an orientation average of

the unpolarized single-crystal neutron scattering struc-

ture factor. We define this powder average by

S̄(q) =

∫

dΩq̂

4π
S(~q ) . (18)

A good example of how inelastic neutron scattering

helps distingush between local and long range order is the

material of Na3RuO4.
27 In Na3RuO4, there is a dominant

finite cluster of four spin-3/2 ions with moderate long

range order. Since there is moderate long range order,

bulk measurements show all interactions. However, using

inelastic neutron scattering, it is possible to examine the

discrete energy levels. Figure 6 shows the prediction of

magnetic excitations of a spin-3/2 tetramer compared to

the experimental data. It is clear that the discrete levels

of the finite clusters are present.27 However, the data

also shows how the finite clusters have long range order

associated with them. This system is currently under

investigation, but the data is quite clear.

2. Infrared and Raman Spectroscopy

Infrared and Raman spectroscopy are not usual tech-

niques when discussing magnetic excitations and inter-

actions. However, through the presents of anisotropic

interactions in a system, magnetic excitations can be

visible. This is possible through a coupling of lattice

FIG. 7: Magnetic field dependence of the single to triple ex-
citation in α-NaVO using infrared spectroscopy.32

symmetry to the typical selection rules. The typical

selection rules for Raman and Infrared spectroscopies

are usually changes in polarizability and dipole moment,

respectively.32 Through a breaking a certain crystal sym-

metries with vibrations and phonons, magnetic excita-

tions can couple to the vibrational excitations making

them visible in light scattering.

Figure 7 shows the magnetic excitations of α-NaVO

visible in infrared spectroscopy. Through the use of ap-

plied field, these magnetic excitations are clearly split

with field.32
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IV. CONCLUSION

Molecular magnets are an interesting and complex area

of condensed matter physics. Whether the systems be-

ing examined are small or large, there are areas to be

investigated that can contribute to the overall realm of

magnetism. Through the use of multiple experimental

techniques and analytical and numerical model, a pic-

ture of the magnetic structure of molecular magnets can

be determined clearly.

1 D. Gatteschi, R. Sessoli, J. Villain (Eds.), Molecular Nano-

magnets (Oxford, 2006).

2 M.A.Nielsen and I.L.Chuang, Quantum Computation and

Quantum Information (Cambridge, 2000).

3 M.M. Turnbull, T. Sugimoto, and L.K. Thompson,

Molecule-Based Magnetic Materials: Theory, Techniques,

and Applications (American Chemical Society, 1996).

4 E.Dagotto and T.M.Rice, Science 271, 618 (1996).

5 J. Schnack, M. Bruger, M. Luban, P. Kogerler, E. Morosan,

R. Fuchs, R. Modler, H. Nojiri, R.C. Rai, J. Cao, J.L.

Musfeldt, and X. Wei, Phys. Rev. B 73, 094401 (2006)

6 T. Lis, Acta Crystallogr. Sect. B:Struct. Crystallogr.

Cryst. Chem. 36, 2042 (1980)

7 T. Baruah, J. Kortus, M.R. Pederson, R. Wesolowski, J.T.

Haraldsen, J.L. Musfeldt, M. North, D. Zipse, and N.S.

Dalal, Phys. Rev. B 70, 214410 (2004)

8 O. Kahn, Molecular Magnetism (VCH Publishers, 1993).

9 J.W.Johnson, D.C.Johnston, A.J.Jacobson and J.F.Brody,

J. Am. Chem. Soc. 106, 8123 (1984).

10 D.A.Tennant, S.E.Nagler, A.W.Garrett, T.Barnes and

C.C.Torardi, Phys. Rev. Lett. 78, 4998 (1997).

11 H.-J.Koo, M.-H.Whangbo, P.D.verNooy, C.C.Torardi and

W.J.Marshall, Inorg. Chem. 41, 4664 (2002).

12 B.Cage, F.A.Cotton, N.S.Dalal, E.A.Hillard, B.Ravkin

and C.M.Ramsey, J. Am. Chem. Soc. 125, 5270 (2003).

13 B.Cage, F.A.Cotton, N.S.Dalal, E.A.Hillard, B.Ravkin

and C.M.Ramsey, C. R. Chemie 6, 39 (2003).

14 U.Kortz, S.Nellutla, A.C.Stowe, N.S.Dalal, J.van Tol and

B.S.Bassil, Inorg. Chem. 43, 144 (2004).
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17 A.Müller and J.Döring, J. Angew. Chem., Int. Ed. Engl.

27, 1721 (1988).

18 A.L.Barra, D.Gatteschi, L.Pardi, A.Müller and J.Döring,
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Nature, 354, 463 (1991).

20 G.Chaboussant, R.Basler, A.Sieber, S.T.Ochsenbein,

A.Desmedt, R.E.Lechner, M.T.F.Telling, P.Kögerler,
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