Midterm Exam 3 ("a.k.a." Final Exam). E&M, Spring 2015. Instructor: E. Dagotto. Delivered: April 16. Deadline: April 27, noon, in my mailbox. Maximum # of points: 20.

(1) Antennas (10 points). This is a problem similar to the one in Section 9.4 of Jackson, which was explained in class. Consider a center-fed antenna as in Figure 9.3 involving a wire of total length d. The current density in the present case is given by

$$J(x') = I \sin(k|z'|) \delta(x') \delta(y') e_z$$

where the product kd satisfies $kd=4\pi$.

- (a) Graph the current along the wire vs. z'. Is the function even or odd?
- (b) Write the vector field A(x) in terms of an integral in the radiation zone.
- (c) Carry out the integration by using the identity

$$sin(u) = (e^{iu} - e^{-iu})/2i$$
 (for arbitrary u)

which leads to easy integrals. Provide the final result for A(x).

(d) Using the generic formula (9.21) and also using the equation

$$\mathbf{H}(\mathbf{x}) = \mathbf{i} \, \mathbf{k} \, \mathbf{n} \, \mathbf{x} \, \mathbf{A}(\mathbf{x}) / \mu_0 \tag{1}$$

discussed in Jackson to obtain the magnetic field **H**, find $dP/d\Omega$ as a function of μ_0 , ϵ_0 , the current intensity I, and the angle θ . *Note:* to get $dP/d\Omega$ only |**H**| is needed from equation (1).

- (e) Make a sketch of the radiation pattern. Based on graph (a), intuitively why this result is different from the pattern created by a dipole?
- (2) Radiation of a point charge (10 points). The main goal of this problem is for you to understand in detail the meaning of all the symbols used to calculate the pattern of radiation $dP/d\Omega$ of a moving point charge.
- (i) Starting with Eq.(11.72) Griffiths, find the power radiated by a particle with charge q that is moving with velocity along the z axis $\mathbf{v} = \mathbf{v} \mathbf{e}_z$, and with acceleration in the x-z plane

 $a=a\ [\cos(\delta)\ e_z+\sin(\delta)\ e_x\].$ Express the results in terms of $q,\,a,\,\mu_0,\,c,\,\beta=v/c$, the angle $\delta,$ and the angles θ and ϕ of the spherical coordinates. Use also the notation $f(\theta,\phi,\delta)=\sin(\theta)\cos(\phi)\sin(\delta)+\cos(\theta)\cos(\delta)$ to abbreviate the final result; this combination of angles appears in the solution.

- (ii) Show that your result reduces to the result given in Problem 11.16 Griffiths for the special case when a points along the x axis (i.e. $\delta = \pi/2$).
- (iii) Show that your result reduces to the Larmor result for the special case when a points along the z axis (i.e. δ =0) and velocity v=0.
- (iv) Finally, show that your result reduces to Eq.(11.74) of Griffiths for the case δ =0 i.e. when v and a are collinear.

Note: If you do not have the book of Griffiths third edition, you can find copies of the relevant chapters in the web page of this course.