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(In Special Relativity this is the trajectory of a particle subject to a constant force F = mc? /b.)
Sketch the graph of w versus ¢. At four or five representative points on the curve, draw the
trajectory of a light signal emitted by the particle at that point—both in the plus x direction
and in the minus x direction. What region on your graph corresponds to points and times (x, ¢)
from which the particle cannot be seen? At what time does someone at point x first see the
particle? (Prior to this the potential at x is evidently zero.) Is it possible for a particle, once
seen, to disappear from view?

Problem 10.16 Determine the Liénard-Wiechert potentials for a charge in hyperbolic motion
(Eq. 10.45). Assume the point r is on the x axis and to the right of the charge.

10.3.2 The Fields of a Moving Point Charge

We are now in a position to calculate the electric and magnetic fields of a point charge in
arbitrary motion, using the Liénard-Wiechert potentials:'!

1 qc \/
= , A Al = =5 k] .
V,t) Ty r,1) = V(r,t) (10.46)

and the equations for E and B:

=—VV—%, B=V xA.
ot

The differentiation is tricky, however, because
a=r—w() and v=w() (10.47)
are both evaluated at the retarded time, and t,—defined implicitly by the equation
Ir—w( ) =c(@—1) (10.48)
—is itself a function of r and £.!2 So hang on: the next two pages are rough going ... but

the answer is worth the effort.
Let’s begin with the gradient of V:

V= V(e —a-v). (10.49)

'You can get the fields directly from Jefimenko’s equations, but it's not easy. See, for example, M. A. Heald
and J. B. Marion, Classical Electromagnetic Radiation, 3d ed., Sect. 8.4 (Orlando, FL: Saunders, 1995).

12The following calculation is done by the most direct, “brute force” method. For a more clever and efficient
approach see J. D. Jackson, Classical Electrodynamics, 3d ed., Sect. 14.1 (New York: John Wiley, 1959),




436 CHAPTER 10. POTENTIALS AND FIELDS

Sinces =c(t — &),
Vi = —cVi,. (10.50)

As for the second term, product rule 4 gives
Ve vV)=@-VIVH (V- V242X (VXV)+Vvx(VxX2a). (10.51)

Evaluating these terms one at a time:

»-V)v

(a a+4 a+4a )
Yox  Yay ‘oz Vi

e e, dvay
= M ax P, dy %28, 9z

= a®- V), (10.52)

where a = v is the acceleration of the particle at the retarded time. Now

v-Via=(v-V)r—(v-V)w, (10.53)
and
v-Vr = (vj.;i + vyi + vzi) xX+y¥y+2z2)
dx dy 02
= uX+y§t+vi=v, (10.54)
while

(v-VIw=yvy(v.Vy)
(same reasoning as Eq. 10.52). Moving on to the third term in Eq. 10.51,

dv, dvy\, [dv, avz)A dvy avx),
Vxv=|—2_22 —x_-z =
xv (ay Bz)x+(8z ax v+ dx  dy z
(Gl i, (dde_ duduyg (dode_du i),
di, 3y dt, 9z dt, 0z dt, ox dt, ax dt. dy
= —ax Vi, (10.55)

Finally,
Vxa=Vxr—-vVxw, (10.56)

but V x r = 0, while, by the same argument as Eq. 10.55,

Vxw=—-vx Vi, (10.57)
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Putting all this back into Eq. 10.51, and using the “BAC-CAB” rule to reduce the triple
cross products,

Ve-v) = a@-V4)+v—v(v-Vt,)—2x (ax V) +vx(vx VL)
= V+(@®r-a— vz)Vt,. (10.58)

Collecting Egs. 10.50 and 10.58 together, we have

vy =-9¢

2_ .2, ..
R Ty [v+(c V42 a)Vt,]. (10.59)

To complete the calculation, we need to know V¢,. This can be found by taking the
gradient of the defining equation (10.48)—which we have already done in Eq. 10.50—and
expanding out Va:

1

—cVt, = Va=Va. =2mV(a-4)
= ’%[(a-V)a+4x(V X 42)). (10.60)

But
@-Va=a—-v(r- Vi)

(same idea as Eq. 10.53), while (from Eq. 10.56 and 10.57)

V xa=(vxVi).

Thus .
-cV1t, = ;[4— va-Vi)+2x (vx V)] = %[a —(2-v)Ve],
and hence
-2
Vi, = . (10.61)
2 —4-V
Incorporating this result into Eq. 10.59, I conclude that
1 qc 2 _ .2
ey [(ac 2-V)V—(c°—v°+2a: a)a] . (10.62)

A similar calculation, which I shall leave for you (Prob. 10.17), yields

0A 1 qc
9 dmeo(ac—4-v)3 [(“_4°v)(_v+4a/0)

+ z((:2 v 4. a)v] . (10.63)
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Combining these results, and introducing the vector

u=cer-v, (10.64)
I find
E(,0) = o @ —vutax @xa) (10.65)
Meanwhile,

VxA= -15V x (Vv) = lZ[V(V xv)—vx(VV)].
c c

We have already calculated V x v (Eq. 10.55) and VV (Eq. 10.62). Putting these together.

_la 1 vt . .
VxA= ¢ dreo (u-a)34x[(c v )v+ (2-a)v+ (3-u)a)l.

The quantity in brackets is strikingly similar to the one in Eq. 10.65, which can be written.
using the BAC-CAB rule, as [(c® = v})u+ (2-a)u — (2-u)a]; the main difference is that we
have v’s instead of u’s in the first two terms. In fact, since it’s all crossed into 4 anyway, we
can with impunity change these v's into —u’s; the extra term proportional to £ disappears
in the cross product. It follows that

a2 x E(r,1). (10.66)

€ |

B(r,t) =

Evidently the magnetic field of a point charge is always perpendicular to the electric field,
and 1o the vector from the retarded point.

The first term in E (the one involving (¢ — v?)u) falls off as the inverse square of the
distance from the particle. If the velocity and acceleration are both zero, this term alone
survives and reduces to the old electrostatic result

1 q.
= ZJ—IG_() 2 2,
For this reason, the first term in E is sometimes called the generalized Coulomb field.
(Because it does not depend on the acceleration, it is also known as the velocity field.) The
second term (the one involving 2 x (u x a)) falls off as the inverse first power of 2 and is
therefore dominant at large distances. As we shall see in Chapter 11, it is this term that is
responsible for electromagnetic radiation; accordingly, it is called the radiation field—or.
since it is proportional to a, the acceleration field. The same terminology applies to the
magnetic field.

Back in Chapter 2, 1 commented that if we could only write down the formula for the
force one charge exerts on another, we would be done with electrodynamics, in principle.
That, together with the superposition principle, would tell us the force exerted on a test
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charge Q by any configuration whatsoever. Well ... here we are: Egs. 10.65 and 10.66 give
us the fields, and the Lorentz force law determines the resulting force:

qQ 2
o u)3 [[(c2 - v )u+4 x (uxa)]
+ ¥ X [ix [(® - vHu+2x (ux a)]]l- (10.67)

where V is the velocity of Q, and 2, u, v, and a are all evaluated at the retarded time. The
entire theory of classical electrodynamics is contained in that equation . .. but you see why
I preferred to start out with Coulomb’s law.

Example 10.4

Calculate the electric and magnetic fields of a point charge moving with constant velocity.
Solution: Putting a = 0 in Eq. 10.65,

_ 4 (cz—vzybu
4ney (2 -u)’

In this case, using w = vr,
nm=op—av=cl®—vty) —c(t —t)v = c(r — vt).

In Ex. 10.3 we found that

ac—l&‘v=4-u=‘/(czt—r-v)2+(cz—vz)(rz—cztz).

In Prob. 10.14, you showed that this radical could be written as

Rey1 — v2sin26/c2,
where
R=r-vwvt

is the vector from the present location of the particle to r, and @ is the angle between R and v
(Fig. 10.9). Thus

q 1 —v?/c? R
N3/2 R2°

(10.68)
4o (l v2 sin 0/c2)

E(r,t) =

Notice that E points ajong the line from the present position of the particle. This is an
extraordinary coincidence, since the “message” came from the retarded position. Because of
the sin? @ in the denominator, the field of a fast-moving charge is flattened out like a pancake in
the direction perpendicular to the motion (Fig. 10.10). In the forward and backward directions
E is reduced by a factor (1 —v 2/¢2) relative to the field of a charge at rest; in the perpendicular

direction it is enhanced by a factor 1/y/1 — v2 /22
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Figure 10.10

As for B, we have

A= r—vil _ (x—vt)+(—t)v ____R+!
2 Py 2 '

and therefore

1
2
Lines of B circle around the charge, as shown in Fig. 10.11.

1.
B= 2(4 x E)= —=(vx E). (10.69)

Figure 10.11

The fields of a point charge moving at constant velocity (Eqs. 10.68 and 10.69) were first
obtained by Oliver Heaviside in 1888.!3 When v? & 2 they reduce to

1 94 Mo 4 A
)=—-—=R; B¢ = ——(vxR). 10.70
E®N = tre &2 0= N ¢

The first is essentially Coulomb’s law, and the latter is the “Biot-Savart law for a point charge™

I warned you about in Chapter 5 (Eq. 5.40).

13For history and references, see O. J. Jefimenko, Am. J. Phys. 62,79 (1994).




