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Point Charges

11.2.1 Power Radiated by a Point Charge

In Chapter 10 we derived the fields of a point charge ¢ in arbitrary motion (Eqs. 10.65 and
10.66):
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Er,t) = dmeq (oo u)? [(c® — v)u+2 x (u x a)), (11.62)
where u = c2 — v, and
B(r,t) = %& x E(r,?). (11.63)

The first term in Eq. 11.62 is called the velocity field, and the second one (with the triple
cross-product) is called the acceleration field.

The Poynting vector is
l l a 1 2 -~ ~
S=—(ExB)=—[Ex@#xE)]=—I|[E°2- (3-E)E]. (11.64)
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However, not all of this energy flux constitutes radiation; some of it is just field energy
carried along by the particle as it moves. The radiated energy is the stuff that, in effect,
detaches itself from the charge and propagates off to infinity. (It’s like flies breeding on a
garbage truck: Some of them hover around the truck as it makes its rounds; others fly away
and never come back.) To calculate the total power radiated by the particle at time ¢,, we
draw a huge sphere of radius 2 (Fig. 11.11), centered at the position of the particle (at time
1,), wait the appropriate interval

f—t =" (11.65)
c

for the radiation to reach the sphere, and at that moment integrate the Poynting vector over
the surface.5 I have used the notation ¢, because, in fact, this is the retarded time for all
points on the sphere at time 7.

Now, the area of the sphere is proportional to 42, so any term in S that goes like 1/2°
will yield a finite answer, but terms like 1/23 or 1/2* will contribute nothing in the limit
2 — oo. For this reason only the acceleration fields represent true radiation (hence their
other name, radiation fields):

Erd = ——

P [ X (u x a)]. (11.66)

SNote the subtle change in strategy here: In Sect. 11.1 we worked from a fixed point (the origin), but here it is
more appropriate to use the (moving) location of the charge. The implications of this change in perspective will
become clearer in a moment.
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Figure 11.11

The velocity fields carry energy, to be sure, and as the charge moves this energy is dragged
along—but it’s not radiation. (It’s like the flies that stay with the garbage truck.) Now E;,4
is perpendicular to 2, so the second term in Eq. 11.64 vanishes:

2. (11.67)

If the charge is instantaneously at rest (at time #,), then u = c%, and
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In that case
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where 6 is the angle between 2 and a. No power is radiated in the forward or backward
direction—rather, it is emitted in a donut about the direction of instantaneous acceleration
(Fig. 11.12).

Figure 11.12
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The total power radiated is evidently
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This, again, is the Larmor formula, which we obtained earlier by another route (Eq. 11.61).
Although I derived them on the assumption that v = 0, Egs. 11.69 and 11.70 actually
hold to good approximation as long as v <« ¢. An exact treatment of the case v # 0 is
more difficult,” both for the obvious reason that E,4 is more complicated, and also for the
more subtle reason that Sp,q, the rate at which energy passes through the sphere, is not the
same as the rate at which energy left the particle. Suppose someone is firing a stream of
bullets out the window of a moving car (Fig.11.13). The rate N; at which the bullets strike

a stationary target is not the same as the rate N ¢ at which they left the gun, because of the
motion of the car. In fact, you can easily check that Ng = (1 —v/c) Ny, if the car is moving

towards the target, and
&
N, = (1 - ——l) N,
c

for arbitrary directions (here v is the velocity of the car, ¢ is that of the bullets—relative to
the ground—and % is a unit vector from car to target). In our case, if dW /dt is the rate at
which energy passes through the sphere at radius 2, then the rate at which energy left the
charge was

or

(11.70)

(11.71)

dW _dW/dr (4-u) dw
dt, ~ 8,09t \ac /) a1’

Figure 11.13

7In the context of special relativity, the condition v = 0 simply represents an astute choice of reference system.
with no essential loss of generality. If you can decide how P transforms, you can deduce the general (Liénard)
result from the v = 0 (Larmor) formula (see Prob. 12.69).
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(T used Eq. 10.71 to express 3¢, /31.) But

a-u { 2-v

ac c

which is precisely the ratio of N, to N;; it’s a purely geometrical factor (the same as in the
Doppler effect).

The power radiated by the particle into a patch of area 22 sin 6 d6 d¢ = 2% dS2 on the
sphere is therefore given by

dP . 1 2 14 2
(35) —E2p? = L hx @ xa) (11.72)
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where dQ2 = sin6 d0 d¢ is the solid angle into which this power is radiated. Integrating
over 6 and ¢ to get the total power radiated is no picnic, and for once I shall simply quote

the answer:
2
) , (11.73)

where y = 1/{/1 — v2/c?. This is Liénard’s generalization of the Larmor formula (to
which it reduces when v <« ¢). The factor y6 means that the radiated power increases
enormously as the particle velocity approaches the speed of light.
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Example 11.3

Suppose v and a are instantaneously collinear (at time #), as, for example, in straight-line
motion. Find the angular distribution of the radiation (Eq. 11.72) and the total power emitted.
Solution: In this case (u x @) = c(® x ), s0

dP _ g®c Wx @xa)?

dQ ~ 16n2¢y (c—4%-v)®

Now
Ax(Axa)=@R-a)k—a, solix@xa)=a’- (% a)

In particular, if we let the z axis point along v, then

dpP uogla? sin? §

= , 11.74
dQ  16n2¢c (1 - Bcosd)’ ¢ )

where B = v/c. This is consistent, of course, with Eq. 11.69, in the case v = 0. However, for
very large v (8 = 1) the donut of radiation (Fig. 11.12) is stretched out and pushed forward
by the factor (1 — B cos )=, as indicated in Fig. 11.14. Although there is still no radiation in
precisely the forward direction, most of it is concentrated within an increasingly narrow cone
about the forward direction (see Prob. 11.15).
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Figure 11.14

The toral power emitted is found by integrating Eq. 11.74 over all angles:

dP ;4.0an2 /‘ sin2 @ ;
P=] —dQ = .
f daQ 16w2¢ J (1~ Bcosd)’ sinf do dg

The ¢ integral is 27r; the 6 integral is simplified by the substitution x = cos 6:

2.2 p+l _ 2
P = u'oq a / de_
8rc Jo1 (- pBx)

Integration by parts yields %(l ~ B2)~3, and I conclude that

_ pog’a?y®

P
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(1L.75)
This result is cofisistent with the Liénard formula (Eq. 11.73), for the case of collinear v and a.
Notice that the angular distribution of the radiation is the same whether the particle is accel-
erating or decelerating; it only depends on the square of a, and is concentrated in the forward
direction (with respect to the velocity) in ejther case. When a high speed electron hits a metal
target it rapidly decelerates, giving off what is called bremsstrahlung, or “braking radiation.”
What I have described in this example is essentially the classical theory of bremsstrahlung.

Problem 11.13

(a) Suppose an electron decelerated at a constant rate a from some initial velocity vy down
to zero. What fraction of its initial kinetic energy is lost to radiation? (The rest is absorbed
by whatever mechanism keeps the acceleration constant.) Assume vg < ¢ so that the Larmor
formula can be used.

(b) To get a sense of the numbers involved, suppose the initial velocity is thermal (around 10°
m/s) and the distance the electron goes is 30 A. What can you conclude about radiation losses
for the electrons in an ordinary conductor?

Problem 11.14 In Bohr’s theory of hydrogen, the electron in its ground state was supposed to
travel in a circle of radius 5 x 10~ !!m, held in orbit by the Coulomb attraction of the proton.
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Figure 11.15 Figure 11.16

Problem 11.16 In Ex. 11.3 we assumed the velocity and acceleration were (instantaneously,

at least) collinear. Carry out the same analysis for the case where they are perpendicular.

Choose your axes so that v lies along the z axis and a along the x axis (Fig. 11.15), so that

v=uvia=ak andd =sinfcospX +sinfsing§y + cosf 2. Check that P is consistent
2,2.,4

with the Liénard formula, [Answer:
_ mogiaty
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dQ ~ 16m2c
For relativistic velocities (8 % 1) the radiation is again sharply peaked in the forward direction
(Fig. 11.16). The most important application of these formulas is to circular motion—in this
case the radiation is called synchrotron radiation. For a relativistic electron the radiation
sweeps around like a locomotive’s headlight as the particle moves.]

11.2.2 Radiation Reaction
al electrodynamics, an accelerating charge radiates. This

h must come at the expense of the particle’s kinetic energy.

According to the laws of classic
ates less than a

radiation carries off energy, whic
Under the influence of a given force, therefore, a charged particle acceler
f the same mass. The radiation evidently exerts a force (Frag) back on the

neutral one 0
gun. In this section we’ll derive the

charge—a recoil force, rather like that of abulletona




