
Final Exam
P555

April 29, 2020

SHOW ALL YOUR WORK TO GET FULL CREDIT!

Submit a pdf file with your work not later that April 29 at 8PM.

Problem 1: In the periodic table we see that the Mn ion has an electronic structure given by 3d54s2.

a) Use Hund rules to obtain S, L, and J for the ground state of the Mn atom. Draw the energy levels in the
relevant shells and indicate the electronic placement. Provide your final result using spectroscopic notation: 2S+1LJ .
(5 points)
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FIG. 1:

Notice that the s-shell is filled and thus, its electrons do not contribute to the magnetic quantum numbers. Thus
we need to look at the d-shell which is half-filled (see panel (a) of Fig. 1). We see that the total spin is S = 5/2, and
L = 0, then J = S = 5/2 and the spectroscopic notation for the ground state of the atom is:6S5/2.

b) The manganese ion Mn2+ has an electronic structure given by 3d5. Use Hund rules to obtain S, L, and J for
the ground state of the Mn atom. Draw the energy levels in the relevant shells and indicate the electronic placement.
Provide your final result using spectroscopic notation: 2S+1LJ . Compare your result with the result you obtained in
part (a). (5 points)

The result is the same as in (a) because now the s-shell is empty and thus, it still does not contribute to the
magnetic quantum nymbers. The electronic structure of the d-shell is the same as in the previous case shown in panel
(a) of Fig. 1. Then the result is 6S5/2.

c) Now provide the electronic structure of the Mn ion Mn3+. (5 points)

In this case we need to remove 1 electron and the only available shell to remove it is the d-shell. Thus the electronic
structure is 3d4.

d) Use Hund rules to obtain S, L, and J for the ground state of the Mn3+ ion. Draw the energy levels in the
relevant shells and indicate the electronic placement. Provide your final result using spectroscopic notation: 2S+1LJ .
(5 points)

Now the d-shell has 4 electrons and is less than half-filled (see panel (b) of Fig. 1). We see that the total spin is
S = 4/2 = 2, and L = 2, then J = |L − S| = 2 − 2 = 0 and the spectroscopic notation for the ground state of the
atom is:5D0.

Problem 2: Consider a semiconductor with the band structure shown in the figure. Its energy gap is ǫg = 0.18eV ,
the effective electron mass in the conduction band is m∗

c = 0.014me, where me is the mass of a free electron, and ǫ = 17



is the dielectric constant of the semiconductor. Useful constants: me = 9.1093 × 10−31 kg; k = 1.38 × 10−23J/K =
8.617 × 10−5eV/K; ~ = 1.054 × 10−34Js = 6.582× 10−16eV s.
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FIG. 2:

a) Just by looking at the figure say if the effective mass of the holes in the valence band is larger or smaller than
the effective mass of the electrons in the conduction band. Justify your answer. (5 points)

We know that the concavity of the bands is related to the effective mass of the fermions. If the band is flat the
electrons are localized and thus, have a very large effective mass, while a large concavity or convexity indicate a light
particle with very small effective mass. Since in the figure the valence band is much flatter than the conduction band
it is clear that electrons in the conduction band have a smaller effective mass than holes in the valence band.

b) Calculate Nc, the density of states per volume available to electrons in the conduction band. Provide its numerical
value at T = 4K and T = 300K. (5 points)

From Eq.(19.24a) we know that

Nc =
1

4
(
2m∗

nkT

π~2
)3/2. (1)

Replacing with the corresponding numerical values we obtain Nc(T = 4K) = 6.4 × 1019m−3 and Nc(T = 300K) =
4.16 × 1022m−3.

c) Calculate n, the density of electrons in the conduction band, at T = 4K and T = 300K. Assume that the
chemical potential µ is at the center of the gap. (5 points)

From Eq.(19.17) we know that

n = Nce
−β(ǫc−µ) = Nce

−βǫg/2, (2)

where we have used that, since the chemical potential is in the middle of the gap, ǫc − µ = ǫg/2. Then replacing
in the equation usings Nc and β for the corresponding values of T (from part (b)). We obtain: n4K = 0 and
n300K = 1.2796× 1021m−3.

d) Calculate p, the density of holes in the valence band, at T = 4K and T = 300K. Assume that the chemical
potential µ is at the center of the gap. (5 points)

Since the semiconductor is undoped we know that any electrons that go to the conduction band need to leave the
corresponding number of holes in the valence band. This means that n = p then p4K = 0 and p300K = 1.2796 ×
1021m−3.



e) Now donor impurities will be added to the semiconductor:

i) Evaluate the binding energy of a donor electron. Provide the result in eV. (5 points)

From (18.23) we know that

ǫb =
e2

2ǫa
=

e4m∗

2ǫ2~2
=

m∗

me

1

ǫ2
13.6eV = 6.58 × 10−4eV. (3)

ii) If the density of added donor impurities is Nd = 1020 per m3, calculate n, the density of electrons in the
conduction band at 4K and 300K. (5 points)

Now

n − p = Nd (4)

and

np = n2
i . (5)

Combining the two previous equations we obtain:

n2 − nNd − n2
i = 0, (6)

and

p2 + pNd − n2
i = 0. (7)

Solving the quadratics we obtain:

n =
Nd

2
+

1

2
(N2

d + 4n2
i )

1/2, (8)

and

p = −
Nd

2
+

1

2
(N2

d + 4n2
i )

1/2. (9)

Then, at T = 4K we obtain n = Nd = 1020m−3 and p = 0. We see that the electrons in the conduction band come
from the ionized impurities.

At T = 300K we obtain n = 1.33 × 1021m−3 and p = 1.23 × 1021m−3. Now we see that the electrons in the
conduction band come from the ionized impurities and from the valence band.

Problem 3: Consider a two-dimensional square lattice of particles with mass M and lattice constant a. Let r̂ij

be a unit vector pointing from the equilibrium location Ri of particle i to the equilibrium location Rj of particle j.
Let ui give the two dimensional displacement of particle i from its equilibrium location. Suppose that the force on
particle i is

Fi = Mω2
0

∑

j

r̂ij [r̂ij .(uj − ui)],

where j indexes nearest neighbors of i.

a) Provide a set of primitive vectors for the lattice. (5 points)

a1 = a(1, 0);a2 = a(0, 1). (10)



b) Provide the number n of nearest neighbors for an atom located at site Ri and provide the location ri,j of each
of the neighbors (with j = 1, ..., n) in terms of the primitive vectors that you provided in (a). (5 points)

In the square lattice each site has n = 4 nearest neighbors. The positions are given by ri1 = a1, ri2 = a2, ri3 = −a1,
and ri4 = −a2.

c) Find the two equations in two unknowns whose solution would give the dispersion relation ωνk for vibrations of
the lattice. (5 points)

Following (13.23) we propose

ui = ǫei(k.Ri−ωt). (11)

We know that M üi = Fi then we obtain:

−Mω2ǫei(k.Ri−ωt) = Mω2
0

4∑

j

r̂ij [r̂ij .ǫ(e
i(k.Rj−ωt) − ei(k.Ri−ωt))] =

Mω2
0

4∑

j

r̂ij [r̂ij .ǫ(e
i(k.(Rj−Ri) − 1)]ei(k.(Ri−ωt).

(12)

Simplifying we obtain:

−ω2ǫ = ω2
0

4∑

j

r̂ij [r̂ij .ǫ(e
ik.rij − 1)] =

ω2
0(2ǫx(cos kxa − 1), 2ǫy(cos kya − 1)).

(13)

Then, the two equations are:

ω2
1 = −2ω2

0(cos kxa − 1), (14)

and

ω2
2 = −2ω2

0(cos kya − 1). (15)

d) Plot the two solutions ω1k and ω2k versus k along the path in k-space Γ−X−M −Γ where Γ = (kx, ky) = (0, 0),
X = (kx, ky) = (π/a, 0), and M = (kx, ky) = (π/a, π/a). Use a different color for ω1k and ω2k and in each panel of
the plot identify which of the two is the longitudinal mode and which one is the transverse mode. (5 points)

We need to plot ω1 = [−2ω2
0(cos kxa − 1)]1/2 and ω2 = [−2ω2

0(cos kya − 1)]1/2 along Γ − X − M − Γ as shown in
the figure.

Notice that along Γ−X the transversal mode is 1 because the ions oscillate along x which the direction parallel to
kx, while along X − M the longitudinal mode is 2 because the ionic displacements are parallel to ky . Finally, along
M − Γ the longitudinal and transverse modes have the same dispersion (they are actually linear combinations of the
modes 1 and 2).

e) Take the limit k → 0 and find the speed of sound along the (1,0) and (0,1) directionsin this system. (5 points)

In the limit k → 0 we obtain that ω1 ≈ ω0kxa and ω2 ≈ ω0kya. Then the speed of sound in both cases is

cs = ω0a. (16)
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