SHOW ALL YOUR WORK TO GET FULL CREDIT!

Problem 1: In the periodic table we see that the P atom has an electronic structure given by $[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{3}$.
a) Use Hund rules to obtain S, L, and J for the ground state of the P atom. Draw the energy levels in the relevant shells and indicate the electronic placement. Provide your final result using spectroscopic notation: ${ }^{2 S+1} L_{J}$. (5 points)
b) Provide the electronic structure of the phosphorus ion P^{+}. (5 points)
c) Use Hund rules to obtain S, L, and J for the ground state of the P^{+}ion. Draw the energy levels in the relevant shells and indicate the electronic placement. Provide your final result using spectroscopic notation: ${ }^{2 S+1} L_{J}$. (5 points)
d) Now provide the electronic structure of the P ion P^{-}. (5 points)
e) Use Hund rules to obtain S, L, and J for the ground state of the P^{-}ion. Draw the energy levels in the relevant shells and indicate the electronic placement. Provide your final result using spectroscopic notation: ${ }^{2 S+1} L_{J}$. (5 points)

Problem 2: Consider a two-dimensional rectangular lattice of particles with mass M and lattice constants a and $b=a / 2$. Let $\hat{r}_{i j}$ be a unit vector pointing from the equilibrium location \mathbf{R}_{i} of particle i to the equilibrium location \mathbf{R}_{j} of particle j. Let \mathbf{u}_{i} give the two dimensional displacement of particle i from its equilibrium location. Suppose that there is a nearest neighbor harmonic potential between the atoms. The spring constant along a is K_{a} and along b is K_{b} with $K_{b}=K_{a} / 4$.
a) Provide a set of primitive vectors for the lattice. (5 points)
b) Provide the number n of nearest neighbors for an atom located at site \mathbf{R}_{i} and provide the location $\mathbf{r}_{i, j}$ of each of the neighbors (with $j=1, \ldots, n$) in terms of the primitive vectors that you provided in (a). (5 points)
c) Find the two equations in two unknowns whose solution would give the dispersion relation $\omega_{\nu \mathbf{k}}$ for vibrations of the lattice. (5 points)
d) Plot the two solutions $\omega_{1 \mathbf{k}}$ and $\omega_{2 \mathbf{k}}$ versus \mathbf{k} along the path in k -space $Y-\Gamma-X$ where $\Gamma=\left(k_{x}, k_{y}\right)=(0,0)$, $X=\left(k_{x}, k_{y}\right)=(\pi / a, 0)$, and $Y=\left(k_{x}, k_{y}\right)=(0, \pi / b)$. Use a different color for $\omega_{1 \mathbf{k}}$ and $\omega_{2 \mathbf{k}}$ and in each panel of the plot identify which of the two is the longitudinal mode and which one is the transverse mode. (5 points)
e) Take the limit $k \rightarrow 0$ and find the speed of sound along a and along b in this system. Along what direction is the speed of sound larger? (5 points)

