SHOW ALL YOUR WORK TO GET FULL CREDIT!

Problem 1: In the periodic table we see that the P atom has an electronic structure given by $[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{3}$.
a) Use Hund rules to obtain S, L, and J for the ground state of the P atom. Draw the energy levels in the relevant shells and indicate the electronic placement. Provide your final result using spectroscopic notation: ${ }^{2 S+1} L_{J}$. (5 points)

FIG. 1:

Notice that the s-shell is filled and thus, its electrons do not contribute to the magnetic quantum numbers. Thus, we need to look at the p-shell which is half-filled (see panel (a) of Fig. 1). We see that the total spin is $S=3 / 2$, and $L=0$, then $J=S=3 / 2$ and the spectroscopic notation for the ground state of the atom is: ${ }^{4} S_{3 / 2}$.
b) Provide the electronic structure of the phosphorus ion P^{+}. (5 points)

In this case we need to remove 1 electron from the p -shell. Thus the electronic structure is $[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{2}$.
c) Use Hund rules to obtain S, L, and J for the ground state of the P^{+}ion. Draw the energy levels in the relevant shells and indicate the electronic placement. Provide your final result using spectroscopic notation: ${ }^{2 S+1} L_{J}$. (5 points)

Now the p-shell has 2 electrons and is less than half-filled (see panel (b) of Fig. 1). We see that the total spin is $S=2 / 2=1$, and $L=1$, then $J=|L-S|=1-1=0$ and the spectroscopic notation for the ground state of the atom is: ${ }^{3} P_{0}$.
d) Now provide the electronic structure of the P ion P^{-}. (5 points)

In this case we need to add 1 electron in the p-shell. Thus the electronic structure is $[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{4}$.
e) Use Hund rules to obtain S , L, and J for the ground state of the P^{-}ion. Draw the energy levels in the relevant shells and indicate the electronic placement. Provide your final result using spectroscopic notation: ${ }^{2 S+1} L_{J}$. (5 points)

Now the p-shell has 4 electrons and is more than half-filled (see panel (c) of Fig. 1). We see that the total spin is $S=2 / 2=1$, and $L=1$, then $J=|L+S|=1+1=2$ and the spectroscopic notation for the ground state of the atom is: ${ }^{3} P_{2}$.

Problem 2: Consider a two-dimensional rectangular lattice of particles with mass M and lattice constants a and $b=a / 2$. Let $\hat{r}_{i j}$ be a unit vector pointing from the equilibrium location \mathbf{R}_{i} of particle i to the equilibrium location \mathbf{R}_{j} of particle j. Let \mathbf{u}_{i} give the two dimensional displacement of particle i from its equilibrium location. Suppose that there is a nearest neighbor harmonic potential between the atoms. The spring constant along a is K_{a} and along b is K_{b} with $K_{b}=K_{a} / 4$.
a) Provide a set of primitive vectors for the lattice. (5 points)

$$
\begin{equation*}
\mathbf{a}_{1}=a(1,0) ; \mathbf{a}_{2}=b(0,1)=\frac{a}{2}(0,1) . \tag{1}
\end{equation*}
$$

b) Provide the number n of nearest neighbors for an atom located at site \mathbf{R}_{i} and provide the location $\mathbf{r}_{i, j}$ of each of the neighbors (with $j=1, \ldots, n$) in terms of the primitive vectors that you provided in (a). (5 points)

In the rectangular lattice each site has $n=4$ nearest neighbors. The positions are given by $\mathbf{r}_{i 1}=\mathbf{R}_{i}+\mathbf{a}_{1}=\left(i_{x}+a, i_{y}\right)$, $\mathbf{r}_{i 2}=\mathbf{R}_{i}+\mathbf{a}_{2}=\left(i_{x}, i_{y}+a / 2\right), \mathbf{r}_{i 3}=\mathbf{R}_{i}-\mathbf{a}_{1}=\left(i_{x}-a, i_{y}\right)$, and $\mathbf{r}_{i 4}=\mathbf{R}_{i}-\mathbf{a}_{2}=\left(i_{x}, i_{y}-a / 2\right)$.
c) Find the two equations in two unknowns whose solution would give the dispersion relation $\omega_{\nu \mathbf{k}}$ for vibrations of the lattice. (5 points)

As we did in class we propose

$$
\begin{equation*}
\mathbf{u}_{i}=\epsilon e^{i\left(\mathbf{k} \cdot \mathbf{R}_{i}-\omega t\right)} \tag{2}
\end{equation*}
$$

We know that $M \ddot{\mathbf{u}}_{i}=\mathbf{F}_{i}$ and for an harmonic potential $F_{i}^{l}=K_{l} \sum_{j}\left(u_{j}^{l}-u_{i}^{l}\right)$ where $l=a, b$ labels the component of the force and j is a nearest neighbor along l. We have chosen the x axis along a and the y axis along b. Then along x we obtain:

$$
\begin{equation*}
M \ddot{u}_{i}^{x}=K_{a}\left[\left(u_{i_{1}}^{x}-u_{i}^{x}\right)+\left(u_{i_{3}}^{x}-u_{i}^{x}\right)\right] . \tag{3}
\end{equation*}
$$

Replacing Eq. 2 in Eq. 3:

$$
\begin{equation*}
-M \omega^{2} u_{i}^{x}=K_{a}\left[\left(e^{i k_{x} a}-1\right)+\left(e^{-i k_{x} a}-1\right)\right] u_{i}^{x} \tag{4}
\end{equation*}
$$

Dividing by u_{i}^{x} we obtain:

$$
\begin{equation*}
-M \omega^{2}=2 K_{a}\left[\cos \left(k_{x} a\right)-1\right]=-4 K_{a} \sin ^{2}\left(k_{x} a / 2\right) \tag{5}
\end{equation*}
$$

Then

$$
\begin{equation*}
\omega_{1}=\omega_{x}=2 \sqrt{\frac{K_{a}}{M}}\left|\sin \left(k_{x} a / 2\right)\right| \tag{6}
\end{equation*}
$$

Now for the displacements along y we obtain:

$$
\begin{equation*}
M \ddot{u}_{i}^{y}=K_{b}\left[\left(u_{i_{2}}^{y}-u_{i}^{y}\right)+\left(u_{i_{4}}^{y}-u_{i}^{y}\right)\right] . \tag{7}
\end{equation*}
$$

Replacing Eq. 2 in Eq. 7:

$$
\begin{equation*}
-M \omega^{2} u_{i}^{y}=K_{b}\left[\left(e^{i k_{y} a / 2}-1\right)+\left(e^{-i k_{y} a / 2}-1\right)\right] u_{i}^{y} \tag{8}
\end{equation*}
$$

Dividing by u_{i}^{y} we obtain:

$$
\begin{equation*}
-M \omega^{2}=2 K_{b}\left[\cos \left(k_{y} a / 2\right)-1\right]=-4 K_{b} \sin ^{2}\left(k_{x} a / 4\right) \tag{9}
\end{equation*}
$$

Then

$$
\begin{equation*}
\omega_{2}=\omega_{y}=2 \sqrt{\frac{K_{b}}{M}}\left|\sin \left(k_{y} a / 4\right)\right| \tag{10}
\end{equation*}
$$

FIG. 2:
d) Plot the two solutions $\omega_{1 \mathbf{k}}$ and $\omega_{2 \mathbf{k}}$ versus \mathbf{k} along the path in k -space $Y-\Gamma-X$ where $\Gamma=\left(k_{x}, k_{y}\right)=(0,0)$, $X=\left(k_{x}, k_{y}\right)=(\pi / a, 0)$, and $Y=\left(k_{x}, k_{y}\right)=(0, \pi / b)$. Use a different color for $\omega_{1 \mathbf{k}}$ and $\omega_{2 \mathbf{k}}$ and in each panel of the plot identify which of the two is the longitudinal mode and which one is the transverse mode. (5 points)

We need to plot $\omega_{1}=2 \sqrt{\frac{K_{a}}{M}}\left|\sin \left(k_{x} a / 2\right)\right|$ and $\omega_{2}=\sqrt{\frac{K_{a}}{M}}\left|\sin \left(k_{y} a / 4\right)\right|$, where we have used that $K_{b}=K_{a} / 4$, along $Y-\Gamma-X$ as shown in the figure.

Notice that along $\Gamma-X$ the transversal mode is 2 because the ions oscillate along x which is the direction parallel to k_{x}, while along $Y-\Gamma$ the longitudinal mode is 2 because the ionic displacements are parallel to k_{y}.
e) Take the limit $k \rightarrow 0$ and find the speed of sound along a and along b in this system. Along what direction is the speed of sound larger? (5 points)

In the limit $k \rightarrow 0$ we obtain that $\omega_{1} \approx \sqrt{K_{a} / M}\left|k_{x}\right| a$ and $\omega_{2} \approx \sqrt{K_{b} / M}\left|k_{y}\right| a / 2$. Then the speed of sound is

$$
\begin{align*}
& c_{s, 1}=a \sqrt{K_{a} / M}, \tag{11}\\
& c_{s, 2}=\frac{a \sqrt{K_{b} / M}}{2} . \tag{12}
\end{align*}
$$

The speed of sound is larger along a as it can be seen in Fig. 2 because the slope of the curve at Γ is larger along Γ-X than along Γ - Y .

