
Final Exam
P555

May 6, 2021

SHOW ALL YOUR WORK TO GET FULL CREDIT!

Problem 1: In the periodic table we see that the P atom has an electronic structure given by [Ne]3s23p3.

a) Use Hund rules to obtain S, L, and J for the ground state of the P atom. Draw the energy levels in the relevant
shells and indicate the electronic placement. Provide your final result using spectroscopic notation: 2S+1LJ . (5 points)
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FIG. 1:

Notice that the s-shell is filled and thus, its electrons do not contribute to the magnetic quantum numbers. Thus,
we need to look at the p-shell which is half-filled (see panel (a) of Fig. 1). We see that the total spin is S = 3/2, and
L = 0, then J = S = 3/2 and the spectroscopic notation for the ground state of the atom is:4S3/2.

b) Provide the electronic structure of the phosphorus ion P+. (5 points)

In this case we need to remove 1 electron from the p-shell. Thus the electronic structure is [Ne]3s23p2.

c) Use Hund rules to obtain S, L, and J for the ground state of the P+ ion. Draw the energy levels in the relevant
shells and indicate the electronic placement. Provide your final result using spectroscopic notation: 2S+1LJ . (5 points)

Now the p-shell has 2 electrons and is less than half-filled (see panel (b) of Fig. 1). We see that the total spin is
S = 2/2 = 1, and L = 1, then J = |L − S| = 1 − 1 = 0 and the spectroscopic notation for the ground state of the
atom is:3P0.

d) Now provide the electronic structure of the P ion P−. (5 points)

In this case we need to add 1 electron in the p-shell. Thus the electronic structure is [Ne]3s23p4.

e) Use Hund rules to obtain S, L, and J for the ground state of the P− ion. Draw the energy levels in the relevant
shells and indicate the electronic placement. Provide your final result using spectroscopic notation: 2S+1LJ . (5 points)

Now the p-shell has 4 electrons and is more than half-filled (see panel (c) of Fig. 1). We see that the total spin is
S = 2/2 = 1, and L = 1, then J = |L + S| = 1 + 1 = 2 and the spectroscopic notation for the ground state of the
atom is:3P2.



Problem 2: Consider a two-dimensional rectangular lattice of particles with mass M and lattice constants a and
b = a/2. Let r̂ij be a unit vector pointing from the equilibrium location Ri of particle i to the equilibrium location
Rj of particle j. Let ui give the two dimensional displacement of particle i from its equilibrium location. Suppose
that there is a nearest neighbor harmonic potential between the atoms. The spring constant along a is Ka and along
b is Kb with Kb = Ka/4.

a) Provide a set of primitive vectors for the lattice. (5 points)

a1 = a(1, 0);a2 = b(0, 1) =
a

2
(0, 1). (1)

b) Provide the number n of nearest neighbors for an atom located at site Ri and provide the location ri,j of each
of the neighbors (with j = 1, ..., n) in terms of the primitive vectors that you provided in (a). (5 points)

In the rectangular lattice each site has n = 4 nearest neighbors. The positions are given by ri1 = Ri+a1 = (ix+a, iy),
ri2 = Ri + a2 = (ix, iy + a/2), ri3 = Ri − a1 = (ix − a, iy), and ri4 = Ri − a2 = (ix, iy − a/2).

c) Find the two equations in two unknowns whose solution would give the dispersion relation ωνk for vibrations of
the lattice. (5 points)

As we did in class we propose

ui = ǫei(k.Ri−ωt). (2)

We know that M üi = Fi and for an harmonic potential F l
i = Kl

∑

j(u
l
j − ul

i) where l = a, b labels the component of
the force and j is a nearest neighbor along l. We have chosen the x axis along a and the y axis along b. Then along
x we obtain:

Müx
i = Ka[(ux

i1 − ux
i ) + (ux

i3 − ux
i )]. (3)

Replacing Eq. 2 in Eq. 3:

−Mω2ux
i = Ka[(e

ikxa − 1) + (e−ikxa − 1)]ux
i . (4)

Dividing by ux
i we obtain:

−Mω2 = 2Ka[cos(kxa) − 1] = −4Ka sin2(kxa/2). (5)

Then

ω1 = ωx = 2

√

Ka

M
| sin(kxa/2)|. (6)

Now for the displacements along y we obtain:

Müy
i = Kb[(u

y
i2
− uy

i ) + (uy
i4
− uy

i )]. (7)

Replacing Eq. 2 in Eq. 7:

−Mω2uy
i = Kb[(e

ikya/2 − 1) + (e−ikya/2 − 1)]uy
i . (8)

Dividing by uy
i we obtain:

−Mω2 = 2Kb[cos(kya/2)− 1] = −4Kb sin2(kxa/4). (9)

Then

ω2 = ωy = 2

√

Kb

M
| sin(kya/4)|. (10)
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FIG. 2:

d) Plot the two solutions ω1k and ω2k versus k along the path in k-space Y − Γ − X where Γ = (kx, ky) = (0, 0),
X = (kx, ky) = (π/a, 0), and Y = (kx, ky) = (0, π/b). Use a different color for ω1k and ω2k and in each panel of the
plot identify which of the two is the longitudinal mode and which one is the transverse mode. (5 points)

We need to plot ω1 = 2
√

Ka

M | sin(kxa/2)| and ω2 =
√

Ka

M | sin(kya/4)|, where we have used that Kb = Ka/4, along

Y − Γ − X as shown in the figure.

Notice that along Γ− X the transversal mode is 2 because the ions oscillate along x which is the direction parallel
to kx, while along Y − Γ the longitudinal mode is 2 because the ionic displacements are parallel to ky.

e) Take the limit k → 0 and find the speed of sound along a and along b in this system. Along what direction is
the speed of sound larger? (5 points)

In the limit k → 0 we obtain that ω1 ≈
√

Ka/M |kx|a and ω2 ≈
√

Kb/M |ky|a/2. Then the speed of sound is

cs,1 = a
√

Ka/M, (11)

cs,2 =
a
√

Kb/M

2
. (12)

The speed of sound is larger along a as it can be seen in Fig.2 because the slope of the curve at Γ is larger along
Γ-X than along Γ-Y.


