Final Exam

SHOW ALL YOUR WORK TO GET FULL CREDIT!

Problem 1: In the periodic table we see that the P atom has an electronic structure given by $[Ne]3s^23p^3$.

a) Use Hund rules to obtain S, L, and J for the ground state of the P atom. Draw the energy levels in the relevant shells and indicate the electronic placement. Provide your final result using spectroscopic notation: ${}^{2S+1}L_J$. (5 points)

FIG. 1:

Notice that the s-shell is filled and thus, its electrons do not contribute to the magnetic quantum numbers. Thus, we need to look at the p-shell which is half-filled (see panel (a) of Fig. 1). We see that the total spin is S = 3/2, and L = 0, then J = S = 3/2 and the spectroscopic notation for the ground state of the atom is:⁴S_{3/2}.

b) Provide the electronic structure of the phosphorus ion P^+ . (5 points)

In this case we need to remove 1 electron from the p-shell. Thus the electronic structure is $[Ne]3s^23p^2$.

c) Use Hund rules to obtain S, L, and J for the ground state of the P⁺ ion. Draw the energy levels in the relevant shells and indicate the electronic placement. Provide your final result using spectroscopic notation: ${}^{2S+1}L_J$. (5 points)

Now the p-shell has 2 electrons and is less than half-filled (see panel (b) of Fig. 1). We see that the total spin is S = 2/2 = 1, and L = 1, then J = |L - S| = 1 - 1 = 0 and the spectroscopic notation for the ground state of the atom is:³P₀.

d) Now provide the electronic structure of the P ion P^- . (5 points)

In this case we need to add 1 electron in the p-shell. Thus the electronic structure is $[Ne]3s^23p^4$.

e) Use Hund rules to obtain S, L, and J for the ground state of the P⁻ ion. Draw the energy levels in the relevant shells and indicate the electronic placement. Provide your final result using spectroscopic notation: ${}^{2S+1}L_J$. (5 points)

Now the p-shell has 4 electrons and is more than half-filled (see panel (c) of Fig. 1). We see that the total spin is S = 2/2 = 1, and L = 1, then J = |L + S| = 1 + 1 = 2 and the spectroscopic notation for the ground state of the atom is:³P₂.

Problem 2: Consider a two-dimensional rectangular lattice of particles with mass M and lattice constants a and b = a/2. Let \hat{r}_{ij} be a unit vector pointing from the equilibrium location \mathbf{R}_i of particle i to the equilibrium location \mathbf{R}_j of particle j. Let \mathbf{u}_i give the two dimensional displacement of particle i from its equilibrium location. Suppose that there is a nearest neighbor harmonic potential between the atoms. The spring constant along a is K_a and along b is K_b with $K_b = K_a/4$.

a) Provide a set of primitive vectors for the lattice. (5 points)

$$\mathbf{a}_1 = a(1,0); \mathbf{a}_2 = b(0,1) = \frac{a}{2}(0,1).$$
 (1)

b) Provide the number n of nearest neighbors for an atom located at site \mathbf{R}_i and provide the location $\mathbf{r}_{i,j}$ of each of the neighbors (with j = 1, ..., n) in terms of the primitive vectors that you provided in (a). (5 points)

In the rectangular lattice each site has n = 4 nearest neighbors. The positions are given by $\mathbf{r}_{i1} = \mathbf{R}_i + \mathbf{a}_1 = (i_x + a, i_y)$, $\mathbf{r}_{i2} = \mathbf{R}_i + \mathbf{a}_2 = (i_x, i_y + a/2)$, $\mathbf{r}_{i3} = \mathbf{R}_i - \mathbf{a}_1 = (i_x - a, i_y)$, and $\mathbf{r}_{i4} = \mathbf{R}_i - \mathbf{a}_2 = (i_x, i_y - a/2)$.

c) Find the two equations in two unknowns whose solution would give the dispersion relation $\omega_{\nu \mathbf{k}}$ for vibrations of the lattice. (5 points)

As we did in class we propose

$$\mathbf{u}_i = \epsilon e^{i(\mathbf{k}.\mathbf{R}_i - \omega t)}.\tag{2}$$

We know that $M\ddot{\mathbf{u}}_i = \mathbf{F}_i$ and for an harmonic potential $F_i^l = K_l \sum_j (u_j^l - u_i^l)$ where l = a, b labels the component of the force and j is a nearest neighbor along l. We have chosen the x axis along a and the y axis along b. Then along x we obtain:

$$M\ddot{u}_i^x = K_a[(u_{i_1}^x - u_i^x) + (u_{i_3}^x - u_i^x)].$$
(3)

Replacing Eq. 2 in Eq. 3:

$$-M\omega^2 u_i^x = K_a[(e^{ik_x a} - 1) + (e^{-ik_x a} - 1)]u_i^x.$$
(4)

Dividing by u_i^x we obtain:

$$-M\omega^2 = 2K_a[\cos(k_x a) - 1] = -4K_a \sin^2(k_x a/2).$$
(5)

Then

$$\omega_1 = \omega_x = 2\sqrt{\frac{K_a}{M}} |\sin(k_x a/2)|. \tag{6}$$

Now for the displacements along y we obtain:

$$M\ddot{u}_{i}^{y} = K_{b}[(u_{i_{2}}^{y} - u_{i}^{y}) + (u_{i_{4}}^{y} - u_{i}^{y})].$$
⁽⁷⁾

Replacing Eq. 2 in Eq. 7:

$$-M\omega^2 u_i^y = K_b[(e^{ik_y a/2} - 1) + (e^{-ik_y a/2} - 1)]u_i^y.$$
(8)

Dividing by u_i^y we obtain:

$$-M\omega^2 = 2K_b[\cos(k_y a/2) - 1] = -4K_b \sin^2(k_x a/4).$$
(9)

Then

$$\omega_2 = \omega_y = 2\sqrt{\frac{K_b}{M}} |\sin(k_y a/4)|. \tag{10}$$

FIG. 2:

d) Plot the two solutions $\omega_{1\mathbf{k}}$ and $\omega_{2\mathbf{k}}$ versus \mathbf{k} along the path in k-space $Y - \Gamma - X$ where $\Gamma = (k_x, k_y) = (0, 0)$, $X = (k_x, k_y) = (\pi/a, 0)$, and $Y = (k_x, k_y) = (0, \pi/b)$. Use a different color for $\omega_{1\mathbf{k}}$ and $\omega_{2\mathbf{k}}$ and in each panel of the plot identify which of the two is the longitudinal mode and which one is the transverse mode. (5 points)

We need to plot $\omega_1 = 2\sqrt{\frac{K_a}{M}} |\sin(k_x a/2)|$ and $\omega_2 = \sqrt{\frac{K_a}{M}} |\sin(k_y a/4)|$, where we have used that $K_b = K_a/4$, along $Y - \Gamma - X$ as shown in the figure.

Notice that along $\Gamma - X$ the transversal mode is 2 because the ions oscillate along x which is the direction parallel to k_x , while along $Y - \Gamma$ the longitudinal mode is 2 because the ionic displacements are parallel to k_y .

e) Take the limit $k \to 0$ and find the speed of sound along a and along b in this system. Along what direction is the speed of sound larger? (5 points)

In the limit $k \to 0$ we obtain that $\omega_1 \approx \sqrt{K_a/M} |k_x| a$ and $\omega_2 \approx \sqrt{K_b/M} |k_y| a/2$. Then the speed of sound is

$$c_{s,1} = a\sqrt{K_a/M},\tag{11}$$

$$c_{s,2} = \frac{a\sqrt{K_b/M}}{2}.$$
(12)

The speed of sound is larger along a as it can be seen in Fig.2 because the slope of the curve at Γ is larger along Γ -X than along Γ -Y.