Second Midterm Exam

P555 April 1, 2021

SHOW ALL YOUR WORK TO GET FULL CREDIT!

Problem 1: In Fig. 1 you can see the reciprocal lattice for an hexagonal Bravais lattice with primitive vectors $\mathbf{a}_1 = a(1,0)$ and $\mathbf{a}_2 = a(1/2,\sqrt{3}/2)$. The primitive vectors of the reciprocal lattice $\mathbf{b}_1 = 2\pi/a(1,-\sqrt{3}/3)$ and $\mathbf{b}_2 = 4\pi/a(0,\sqrt{3}/3)$ are indicated in the figure.

FIG. 1: The primitive vectors are indicated in green and the FBZ is indicated in red.

a) Draw the FBZ in Fig. 1 and label the vertices of the FBZ $V_1, V_2, ..., V_n$ with V_1 indicating the vertex along the positive k_x axis, V_2 the next vertex in a counterclockwise direction, etc. n is the number of vertices in the FBZ. (10 points)

See Fig. 1.

b) In your graph V_1 labels a point with momentum $\mathbf{k}_{V_1} = (p, 0)$. Provide the value of p in terms of the lattice constant a.(5 points)

We see that

$$p\cos 30^{o} = p\frac{\sqrt{3}}{2} = \frac{b_1}{2} = \frac{b_2}{2} = \frac{4\pi}{3a}\frac{\sqrt{3}}{2},\tag{1}$$

then,

$$p = \frac{4\pi}{3a}.$$
(2)

c) What is the energy $\epsilon_{V_1}^0$ of a free electron with momentum \mathbf{k}_{V_1} ? (5 points)

We know that the energy of a free electron with momentum **k** is given by $\epsilon_{\mathbf{k}}^0 = \frac{\hbar^2 k^2}{2m}$, then a free electron with momentum $\mathbf{k}_{V_1} = (\frac{4\pi}{3a}, 0)$ has energy

$$\epsilon_{\mathbf{k}_{V_i}}^0 = \frac{\hbar^2 k_{V_i}^2}{2m} = \frac{8\pi^2 \hbar^2}{9ma^2}.$$
(3)

d) Identify all the points in the FBZ in which a free electron will have the same energy as in point V_1 and provide the crystal momentum **k** for each of the points. (10 points)

We see that all 6 vertices of the FBZ are equidistant from the origin because the FBZ is an equilateral hexagon. This means that these 6 points have crystal momenta with the same magnitude as V_1 , i.e. $k_{V_i} = \frac{4\pi}{3a}$ for i = 1, 2, 3, 4, 5, 6. The crystal momentum for each point is given by:

$$\mathbf{k}_{V_1} = \frac{4\pi}{3a}(1,0),\tag{4}$$

$$\mathbf{k}_{V_2} = \frac{4\pi}{3a} (\frac{1}{2}, \frac{\sqrt{3}}{2}),\tag{5}$$

$$\mathbf{k}_{V_3} = \frac{4\pi}{3a} \left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right),\tag{6}$$

$$\mathbf{k}_{V_4} = \frac{4\pi}{3a}(-1,0),\tag{7}$$

$$\mathbf{k}_{V_5} = \frac{4\pi}{3a} \left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right),\tag{8}$$

$$\mathbf{k}_{V_6} = \frac{4\pi}{3a} (\frac{1}{2}, -\frac{\sqrt{3}}{2}). \tag{9}$$

e) Identify which of the points found in (d) have a momentum \mathbf{k}_j satisfying $\mathbf{k}_j - \mathbf{k}_{V_1} = \mathbf{K}_j$ where \mathbf{K}_j is a vector of the reciprocal lattice and j is an index that labels the point that satisfy the condition. Provide the points and the vector \mathbf{K}_j for each of the points in terms of the primitive vectors $\{\mathbf{b}_i\}$ given at the beginning of the problem. (10 points)

We need to evaluate $\mathbf{k}_j - \mathbf{k}_{V_1}$ for $j = V_2, V_3, V_4, V_5$ and V_6 :

$$\mathbf{k}_{V_2} - \mathbf{k}_{V_1} = \frac{4\pi}{3a} (\frac{1}{2}, -\frac{\sqrt{3}}{2}) = \frac{1}{3} \mathbf{b}_1.$$
(10)

We see that the above is not a vector of the reciprocal lattice because it cannot be expressed in terms of the primitive vectors with integer coefficients. We also see that the magnitude of $\mathbf{k}_{V_2} - \mathbf{k}_{V_1}$ is smaller than the magnitude of the primitive vectors.

$$\mathbf{k}_{V_3} - \mathbf{k}_{V_1} = \frac{4\pi}{3a} \left(-\frac{3}{2}, \frac{\sqrt{3}}{2}\right) = -\mathbf{b}_1 = \mathbf{K}_3.$$
(11)

We see that \mathbf{K}_3 is a vector of the reciprocal lattice.

$$\mathbf{k}_{V_4} - \mathbf{k}_{V_1} = \frac{4\pi}{3a}(-2,0) = -\frac{4}{3}\mathbf{b}_1 - \frac{2}{3}\mathbf{b}_2.$$
 (12)

We see that the above is not a vector of the reciprocal lattice because it cannot be expressed in terms of the primitive vectors with integer coefficients.

$$\mathbf{k}_{V_5} - \mathbf{k}_{V_1} = \frac{4\pi}{3a} \left(-\frac{3}{2}, -\frac{\sqrt{3}}{2}\right) = -\mathbf{b}_1 - \mathbf{b}_2 = \mathbf{K}_5.$$
(13)

We see that \mathbf{K}_5 is a vector of the reciprocal lattice.

$$\mathbf{k}_{V_6} - \mathbf{k}_{V_1} = \frac{4\pi}{3a} \left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right) = -\frac{1}{3} \mathbf{b}_1 - \frac{2}{3} \mathbf{b}_2.$$
(14)

We see that the above is not a vector of the reciprocal lattice because it cannot be expressed in terms of the primitive vectors with integer coefficients.

Thus, only V_3 and V_5 are connected to V_1 by a vector of the reciprocal lattice.

f) Now a periodic potential $U(\mathbf{r}) = \sum_{\mathbf{K}} U_{\mathbf{K}} e^{i\mathbf{K}\cdot\mathbf{r}}$ is introduced. For $\mathbf{k} = \mathbf{k}_{V_1}$ to which components of the wave function $\Psi(\mathbf{q})$ will $\Psi(\mathbf{k}_{V_1})$ be strongly coupled? (5 points)

From the results of part (e) we see that the components of the wave function with momentum \mathbf{k}_{V_1} will be strongly connected with the components with momentum \mathbf{k}_{V_3} and \mathbf{k}_{V_5} .

g) Write the Schrödinger's equation in the subspace involving only the components of Ψ named in part (f). (10 points)

We have a system of three equations:

$$\frac{\hbar^2 k_{V_1}^2}{2m} \Psi(\mathbf{k}_{V_1}) + U_{\mathbf{k}_{V_1} - \mathbf{k}_{V_3}} \Psi(\mathbf{k}_{V_3}) + U_{\mathbf{k}_{V_1} - \mathbf{k}_{V_5}} \Psi(\mathbf{k}_{V_5}) = \epsilon \Psi(\mathbf{k}_{V_1}),$$
(15)

$$\frac{\hbar^2 k_{V_3}^2}{2m} \Psi(\mathbf{k}_{V_3}) + U_{\mathbf{k}_{V_3} - \mathbf{k}_{V_1}} \Psi(\mathbf{k}_{V_1}) + U_{\mathbf{k}_{V_3} - \mathbf{k}_{V_5}} \Psi(\mathbf{k}_{V_5}) = \epsilon \Psi(\mathbf{k}_{V_3}),$$
(16)

$$\frac{\hbar^2 k_{V_5}^2}{2m} \Psi(\mathbf{k}_{V_5}) + U_{\mathbf{k}_{V_5} - \mathbf{k}_{V_3}} \Psi(\mathbf{k}_{V_3}) + U_{\mathbf{k}_{V_5} - \mathbf{k}_{V_1}} \Psi(\mathbf{k}_{V_1}) = \epsilon \Psi(\mathbf{k}_{V_5}).$$
(17)

h) Write the matrix whose determinant needs to be zero in order to find the possible energies that an electron in the periodic potential may have when its crystal momentum is \mathbf{k}_{V_1} . (10 points)

$$\begin{vmatrix} \epsilon_{\mathbf{k}_{V_{1}}}^{0} - \epsilon & U_{-\mathbf{K}_{3}} & U_{-\mathbf{K}_{5}} \\ U_{\mathbf{K}_{3}} & \epsilon_{\mathbf{k}_{V_{3}}}^{0} - \epsilon & U_{-\mathbf{K}_{53}} \\ U_{\mathbf{K}_{53}} & U_{\mathbf{K}_{5}} & \epsilon_{\mathbf{k}_{V_{5}}}^{0} - \epsilon \end{vmatrix} = 0,$$
(18)

where

$$\mathbf{K}_{53} = \mathbf{k}_{V_5} - \mathbf{k}_{V_3} = \frac{4\pi}{3a}(0, -\sqrt{3}) = -\mathbf{b}_2.$$
 (19)

Bonus (to do at home): provide the energy values that result from solving the equation in part (h). Hint: assume that $U_{\mathbf{K}} = U$ for all the values of \mathbf{K} that appear in your equation. (10 points)

Let's rewrite the determinant using the hint, i.e., that all the values of $U_{\mathbf{K}} = U$ and the fact that $\epsilon_{\mathbf{k}_{V_1}}^0 = \epsilon_{\mathbf{k}_{V_3}}^0 = \epsilon_{\mathbf{k}_{V_5}}^0 = \epsilon_0$. Then the matrix now becomes

$$\begin{vmatrix} \epsilon_0 - \epsilon & U & U \\ U & \epsilon_0 - \epsilon & U \\ U & U & \epsilon_0 - \epsilon \end{vmatrix} = 0.$$
(20)

The determinant in Eq. 20 leads to the cubic equation:

$$(\epsilon_0 - \epsilon)^3 + 2U^3 - 3(\epsilon_0 - \epsilon)U^2 = 0.$$
(21)

We see that $\epsilon_1 = \epsilon_0 + U$ is a root of the equation. Dividing the cubic polynomial by $\epsilon - \epsilon_1$ we obtain the quadratic equation

$$-\epsilon^{2} + (2\epsilon_{0} - U)\epsilon + (2U^{2} - \epsilon_{0}^{2} + \epsilon_{0}U) = 0, \qquad (22)$$

which has solutions $\epsilon_2 = \epsilon_0 + 2U$ and $\epsilon_3 = \epsilon_0 - U$. Thus, ϵ_1 , ϵ_2 , and ϵ_3 are the possible values that an electron with momentum \mathbf{k}_{V_1} in the periodic potential may have. The triple degeneracy is lifted and 3 separate energy bands develop.