SHOW ALL YOUR WORK TO GET FULL CREDIT!

Problem 1: In Fig. 1 you can see the reciprocal lattice for an hexagonal Bravais lattice with primitive vectors $\mathbf{a}_{1}=a(1,0)$ and $\mathbf{a}_{2}=a(1 / 2, \sqrt{3} / 2)$. The primitive vectors of the reciprocal lattice $\mathbf{b}_{1}=2 \pi / a(1,-\sqrt{3} / 3)$ and $\mathbf{b}_{2}=4 \pi / a(0, \sqrt{3} / 3)$ are indicated in the figure.

FIG. 1: The primitive vectors are indicated in green and the FBZ is indicated in red.
a) Draw the FBZ in Fig. 1 and label the vertices of the FBZ $V_{1}, V_{2}, \ldots, V_{n}$ with V_{1} indicating the vertex along the positive k_{x} axis, V_{2} the next vertex in a counterclockwise direction, etc. n is the number of vertices in the FBZ. (10 points)

See Fig. 1.
b) In your graph V_{1} labels a point with momentum $\mathbf{k}_{V_{1}}=(p, 0)$. Provide the value of p in terms of the lattice constant a.(5 points)

We see that

$$
\begin{equation*}
p \cos 30^{\circ}=p \frac{\sqrt{3}}{2}=\frac{b_{1}}{2}=\frac{b_{2}}{2}=\frac{4 \pi}{3 a} \frac{\sqrt{3}}{2}, \tag{1}
\end{equation*}
$$

then,

$$
\begin{equation*}
p=\frac{4 \pi}{3 a} \tag{2}
\end{equation*}
$$

c) What is the energy $\epsilon_{V_{1}}^{0}$ of a free electron with momentum $\mathbf{k}_{V_{1}}$? (5 points)

We know that the energy of a free electron with momentum \mathbf{k} is given by $\epsilon_{\mathbf{k}}^{0}=\frac{\hbar^{2} k^{2}}{2 m}$, then a free electron with momentum $\mathbf{k}_{V_{1}}=\left(\frac{4 \pi}{3 a}, 0\right)$ has energy

$$
\begin{equation*}
\epsilon_{\mathbf{k}_{V_{i}}}^{0}=\frac{\hbar^{2} k_{V_{i}}^{2}}{2 m}=\frac{8 \pi^{2} \hbar^{2}}{9 m a^{2}} \tag{3}
\end{equation*}
$$

d) Identify all the points in the FBZ in which a free electron will have the same energy as in point V_{1} and provide the crystal momentum \mathbf{k} for each of the points. (10 points)

We see that all 6 vertices of the FBZ are equidistant from the origin because the FBZ is an equilateral hexagon. This means that these 6 points have crystal momenta with the same magnitude as V_{1}, i.e. $k_{V_{i}}=\frac{4 \pi}{3 a}$ for $i=1,2,3,4,5,6$. The crystal momentum for each point is given by:

$$
\begin{gather*}
\mathbf{k}_{V_{1}}=\frac{4 \pi}{3 a}(1,0), \tag{4}\\
\mathbf{k}_{V_{2}}=\frac{4 \pi}{3 a}\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right), \tag{5}\\
\mathbf{k}_{V_{3}}=\frac{4 \pi}{3 a}\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right), \tag{6}\\
\mathbf{k}_{V_{4}}=\frac{4 \pi}{3 a}(-1,0), \tag{7}\\
\mathbf{k}_{V_{5}}=\frac{4 \pi}{3 a}\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right), \tag{8}\\
\mathbf{k}_{V_{6}}=\frac{4 \pi}{3 a}\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right) . \tag{9}
\end{gather*}
$$

e) Identify which of the points found in (d) have a momentum \mathbf{k}_{j} satisfyng $\mathbf{k}_{j}-\mathbf{k}_{V_{1}}=\mathbf{K}_{j}$ where \mathbf{K}_{j} is a vector of the reciprocal lattice and j is an index that labels the point that satisfy the condition. Provide the points and the vector \mathbf{K}_{j} for each of the points in terms of the primitive vectors $\left\{\mathbf{b}_{i}\right\}$ given at the beginning of the problem. (10 points)

We need to evaluate $\mathbf{k}_{j}-\mathbf{k}_{V_{1}}$ for $j=V_{2}, V_{3}, V_{4}, V_{5}$ and V_{6} :

$$
\begin{equation*}
\mathbf{k}_{V_{2}}-\mathbf{k}_{V_{1}}=\frac{4 \pi}{3 a}\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)=\frac{1}{3} \mathbf{b}_{1} \tag{10}
\end{equation*}
$$

We see that the above is not a vector of the reciprocal lattice because it cannot be expressed in terms of the primitive vectors with integer coefficients. We also see that the magnitude of $\mathbf{k}_{V_{2}}-\mathbf{k}_{V_{1}}$ is smaller than the magnitude of the primitive vectors.

$$
\begin{equation*}
\mathbf{k}_{V_{3}}-\mathbf{k}_{V_{1}}=\frac{4 \pi}{3 a}\left(-\frac{3}{2}, \frac{\sqrt{3}}{2}\right)=-\mathbf{b}_{1}=\mathbf{K}_{3} \tag{11}
\end{equation*}
$$

We see that \mathbf{K}_{3} is a vector of the reciprocal lattice.

$$
\begin{equation*}
\mathbf{k}_{V_{4}}-\mathbf{k}_{V_{1}}=\frac{4 \pi}{3 a}(-2,0)=-\frac{4}{3} \mathbf{b}_{1}-\frac{2}{3} \mathbf{b}_{2} \tag{12}
\end{equation*}
$$

We see that the above is not a vector of the reciprocal lattice because it cannot be expressed in terms of the primitive vectors with integer coefficients.

$$
\begin{equation*}
\mathbf{k}_{V_{5}}-\mathbf{k}_{V_{1}}=\frac{4 \pi}{3 a}\left(-\frac{3}{2},-\frac{\sqrt{3}}{2}\right)=-\mathbf{b}_{1}-\mathbf{b}_{2}=\mathbf{K}_{5} \tag{13}
\end{equation*}
$$

We see that \mathbf{K}_{5} is a vector of the reciprocal lattice.

$$
\begin{equation*}
\mathbf{k}_{V_{6}}-\mathbf{k}_{V_{1}}=\frac{4 \pi}{3 a}\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)=-\frac{1}{3} \mathbf{b}_{1}-\frac{2}{3} \mathbf{b}_{2} \tag{14}
\end{equation*}
$$

We see that the above is not a vector of the reciprocal lattice because it cannot be expressed in terms of the primitive vectors with integer coefficients.

Thus, only V_{3} and V_{5} are connected to V_{1} by a vector of the reciprocal lattice.
f) Now a periodic potential $U(\mathbf{r})=\sum_{\mathbf{K}} U_{\mathbf{K}} e^{i \mathbf{K} \cdot \mathbf{r}}$ is introduced. For $\mathbf{k}=\mathbf{k}_{V_{1}}$ to which components of the wave function $\Psi(\mathbf{q})$ will $\Psi\left(\mathbf{k}_{V_{1}}\right)$ be strongly coupled? (5 points)

From the results of part (e) we see that the components of the wave function with momentum $\mathbf{k}_{V_{1}}$ will be strongly connected with the components with momentum $\mathbf{k}_{V_{3}}$ and $\mathbf{k}_{V_{5}}$.
g) Write the Schrödinger's equation in the subspace involving only the components of Ψ named in part (f). (10 points)

We have a system of three equations:

$$
\begin{align*}
& \frac{\hbar^{2} k_{V_{1}}^{2}}{2 m} \Psi\left(\mathbf{k}_{V_{1}}\right)+U_{\mathbf{k}_{V_{1}}-\mathbf{k}_{V_{3}}} \Psi\left(\mathbf{k}_{V_{3}}\right)+U_{\mathbf{k}_{V_{1}}-\mathbf{k}_{V_{5}}} \Psi\left(\mathbf{k}_{V_{5}}\right)=\epsilon \Psi\left(\mathbf{k}_{V_{1}}\right), \tag{15}\\
& \frac{\hbar^{2} k_{V_{3}}^{2}}{2 m} \Psi\left(\mathbf{k}_{V_{3}}\right)+U_{\mathbf{k}_{V_{3}}-\mathbf{k}_{V_{1}}} \Psi\left(\mathbf{k}_{V_{1}}\right)+U_{\mathbf{k}_{V_{3}}-\mathbf{k}_{V_{5}}} \Psi\left(\mathbf{k}_{V_{5}}\right)=\epsilon \Psi\left(\mathbf{k}_{V_{3}}\right), \tag{16}\\
& \frac{\hbar^{2} k_{V_{5}}^{2}}{2 m} \Psi\left(\mathbf{k}_{V_{5}}\right)+U_{\mathbf{k}_{V_{5}}-\mathbf{k}_{V_{3}}} \Psi\left(\mathbf{k}_{V_{3}}\right)+U_{\mathbf{k}_{V_{5}}-\mathbf{k}_{V_{1}}} \Psi\left(\mathbf{k}_{V_{1}}\right)=\epsilon \Psi\left(\mathbf{k}_{V_{5}}\right) . \tag{17}
\end{align*}
$$

h) Write the matrix whose determinant needs to be zero in order to find the possible energies that an electron in the periodic potential may have when its crystal momentum is $\mathbf{k}_{V_{1}}$. (10 points)

$$
\left|\begin{array}{ccc}
\epsilon_{\mathbf{k}_{V_{1}}}^{0}-\epsilon & U_{-\mathbf{K}_{3}} & U_{-\mathbf{K}_{5}} \tag{18}\\
U_{\mathbf{K}_{3}} & \epsilon_{\mathbf{k}_{V_{3}}}^{0}-\epsilon & U_{-\mathbf{K}_{53}} \\
U_{\mathbf{K}_{53}} & U_{\mathbf{K}_{5}} & \epsilon_{\mathbf{k}_{V_{5}}}^{0}-\epsilon
\end{array}\right|=0
$$

where

$$
\begin{equation*}
\mathbf{K}_{53}=\mathbf{k}_{V_{5}}-\mathbf{k}_{V_{3}}=\frac{4 \pi}{3 a}(0,-\sqrt{3})=-\mathbf{b}_{2} \tag{19}
\end{equation*}
$$

Bonus (to do at home): provide the energy values that result from solving the equation in part (h). Hint: assume that $U_{\mathbf{K}}=U$ for all the values of \mathbf{K} that appear in your equation. (10 points)

Let's rewrite the determinant using the hint, i.e., that all the values of $U_{\mathbf{K}}=U$ and the fact that $\epsilon_{\mathbf{k}_{V_{1}}}^{0}=\epsilon_{\mathbf{k}_{V_{3}}}^{0}=$ $\epsilon_{\mathbf{k}_{V_{5}}}^{0}=\epsilon_{0}$. Then the matrix now becomes

$$
\left|\begin{array}{ccc}
\epsilon_{0}-\epsilon & U & U \tag{20}\\
U & \epsilon_{0}-\epsilon & U \\
U & U & \epsilon_{0}-\epsilon
\end{array}\right|=0
$$

The determinant in Eq. 20 leads to the cubic equation:

$$
\begin{equation*}
\left(\epsilon_{0}-\epsilon\right)^{3}+2 U^{3}-3\left(\epsilon_{0}-\epsilon\right) U^{2}=0 \tag{21}
\end{equation*}
$$

We see that $\epsilon_{1}=\epsilon_{0}+U$ is a root of the equation. Dividing the cubic polynomial by $\epsilon-\epsilon_{1}$ we obtain the quadratic equation

$$
\begin{equation*}
-\epsilon^{2}+\left(2 \epsilon_{0}-U\right) \epsilon+\left(2 U^{2}-\epsilon_{0}^{2}+\epsilon_{0} U\right)=0 \tag{22}
\end{equation*}
$$

which has solutions $\epsilon_{2}=\epsilon_{0}+2 U$ and $\epsilon_{3}=\epsilon_{0}-U$. Thus, $\epsilon_{1}, \epsilon_{2}$, and ϵ_{3} are the possible values that an electron with momentum $\mathbf{k}_{V_{1}}$ in the periodic potential may have. The triple degeneracy is lifted and 3 separate energy bands develop.

