
Final Exam
P555
May 17, 2022

SHOW ALL YOUR WORK TO GET FULL CREDIT!

Submit a pdf file with your work not later than May 14 at 11:59PM.

Problem 1: In the periodic table we see that the Te atom has an electronic structure given by 4d105s25p4.

a) Use Hund rules to obtain S, L, and J for the ground state of the Te atom. Draw the energy levels in the
relevant shells and indicate the electronic placement. Provide your final result using spectroscopic notation: 2S+1LJ .
(5 points)
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FIG. 1:

Notice that the s-shell and d-shell are filled and thus, its electrons do not contribute to the magnetic quantum
numbers. Thus, we need to look at the p-shell which is more than half-filled (see Fig. 1). We see that the total spin
is S = 1, and L = 1, then J = S+L = 2 since the shell is more than half-filled and the spectroscopic notation for the
ground state of the atom is:3P2.

b) What is the degeneracy of the ground state of Te? (5 points)

The degeneracy of the ground state is 2J + 1. Since J = 2 we see that the degeneracy is 5.

c) Calculate the Landé factor g for the Te atom. (5 points)

The Landé factor is given by

g =
1

2

[3J(J + 1)− L(L+ 1) + S(S + 1)]

J(J + 1)
=

1

2

[6(2 + 1)− 1(1 + 1) + 1(1 + 1)]

2(2 + 1)
=

1

2

[18− 2 + 2)]

6)
=

3

2
.

(1)

d) What is the energy splitting ∆E linear in the magnetic field B for the ground state of a Te atom placed in a
magnetic field B? Provide the energy of each energy level as a function of B. (5 points)



The energy splitting is given by

∆E = gµBB =
3

2
µBB. (2)

The degeneracy 5 is now split and each level will have energy

E = E0 + JzgµBB = E0 + Jz
3

2
µBB, (3)

where E0 is the energy of the degenerate level and Jz = ±2,±1, 0. Thus, E−2 = E0 − 3µBB, E−1 = E0 − 3

2
µBB,

E0 = E0, E1 = E0 +
3

2
µBB, and E2 = E0 + 3µBB.

e) What is the magnetization M of a sample of Te that contains N atoms in a volume V ? (5 points)

The magnetization is given by

M = nµBgJBJ(βµBgJB) =
N

V
µB

3

2
(2)B2(βµB3B) = 3

N

V
µBB2(βµB3B). (4)

f) Provide the value of the magnetization M calculated in (e) when kT ≫ µBB and when kT ≪ µBB. (5 points)

Let define x = µBgJB/kT = µB3B/kT . We know that if kT ≫ µBB

BJ(x) ≈
1

3

J + 1

J
x. (5)

In our case

B2(x) ≈
1

3

2 + 1

2

µB3B

kT
=

1

3

3

2

µB3B

kT
=

3

2

µBB

kT
. (6)

Replacing in Eq. 4 we obtain:

M ≈ 3
N

V
µB

3

2

µBB

kT
=

9

2

N

V

µ2
BB

kT
. (7)

We see that the magnetization at high temperature goes like 1/T , i.e., as expected, decreasing as T increases and
following Curie’s law.
If kT ≪ µBB then x = µB3B/kT becomes very large. Since

B2(x) =
5

4
coth(5x/4)− 1

4
coth(x/4), (8)

We know that

lim
x→∞

coth(x) = lim
x→∞

cosh(x)

sinh(x)
= 1. (9)

Then

lim
x→∞

B2(x) =
5

4
− 1

4
= 1. (10)

Replacing in Eq. 4 we obtain:

M = 3
N

V
µBB2(βµB3B) ≈ 3

N

V
µB, (11)



which is the maximum value that the magnetization can have, as expected at very low temperature.
Problem 2: In the second midterm you found that in a two-dimensional solid made of N atoms with one atom at

each point of the Bravais lattice, the phonon density of states in the Einstein approximation is given by

DE(ω) =
2N

A
δ(ω − ωE), (12)

where ωE is the Einstein frequency and A is the area of the sample, while in the Debye approximation the phonon
density of states is given by

DD(ω) =
ω

πc2
Θ(ω − ωD), (13)

where c is the angular average of the speed of sound in the material and Θ is the Heaviside function.

a) Calculate the heat capacity CE of the material in the Einstein approximation. (5 points)

We know that the heat capacity is given by

C = A

∫
∞

0

dωD(ω)
∂

∂T

~ω

eβ~ω − 1
= A

∫
∞

0

dωD(ω)
~
2ω2eβ~ω

kT 2(eβ~ω − 1)2
, (14)

where β = 1/(kT ). Then in the Einstein approximation we obtain:

CE = A

∫
∞

0

dωDE(ω)
~
2ω2eβ~ω

kT 2(eβ~ω − 1)2
=

A

∫
∞

0

dω
2N

A
δ(ω − ωE)

~
2ω2eβ~ω

kT 2(eβ~ω − 1)2
=

2N
~
2ω2

Ee
β~ωE

kT 2(eβ~ωE − 1)2
.

(15)

b) Provide an expression for CE when T → ∞ and when T → 0. (5 points)

lim
T→∞

CE = 2N
~
2ω2

E

kT 2(1− β~ωE − 1)2
=

2N
~
2ω2

Ek
2T 2

kT 2~2ω2
E

=

2Nk,

(16)

as expected since at high T we obtain the Dulong and Petit result equating the heat capacity to k/2 times the number
of degrees of freedom.

Now let’s obtain the low temperature limit:

lim
T→0

CE = 2N
~
2ω2

Ee
β~ωE

kT 2e2β~ωE

=

2N
~
2ω2

Ee
−β~ωE

kT 2
,

(17)

which goes to zero exponentially with the temperature as expected in the Einstein approximation.

c) Calculate the heat capacity CD of the material in the Debye approximation. (5 points)



CD = A

∫
∞

0

dωDD(ω)
~
2ω2eβ~ω

kT 2(eβ~ω − 1)2
=

A

∫
∞

0

dω
ω

πc2
Θ(ω − ωD)

~
2ω2eβ~ω

kT 2(eβ~ω − 1)2
=

A

∫ ωD

0

dω
ω

πc2
~
2ω2eβ~ω

kT 2(eβ~ω − 1)2
=

A

∫ ΘD/T

0

dx
xkT

~πc2
~
2x2k2T 2ex

~kT 2(ex − 1)2
=

A
k3T 2

~2πc2

∫ ΘD/T

0

dx
x3ex

(ex − 1)2
,

(18)

where we used the change of variables x = β~ω and ΘD = ~ωD/k is the Debye temperature.

d) Provide an expression for CD when T → ∞ and when T → 0. (5 points)

Let’s obtain the high temperature behavior. In this case x ≪ 1 then

lim
T→∞

CD = A
k3T 2

~2πc2

∫ ΘD/T

0

dx
x3

(1 + x− 1)2
=

A
k3T 2

~2πc2

∫ ΘD/T

0

xdx =

A
k3T 2

~2πc2
x2

2
|ΘD/T
0 =

A
k3T 2

~2πc2
Θ2

D

2T 2
=

A
k3T 2

~2πc2
Θ2

D

2T 2
=

A
k3T 2

~2πc2
4~2c2Nπ

2T 2k2A
=

2Nk

(19)

where we used that ωD = 2c
√
nπ and n = N/A. The result is as expected since at high T we obtain the Dulong and

Petit result equating the heat capacity to k/2 times the number of degrees of freedom.

Now let’s obtain the low temperature behavior. In this case x ≫ 1 then

lim
T→0

CD = A
k3T 2

~2πc2

∫
∞

0

dx
x3ex

e2x
=

A
k3T 2

~2πc2

∫
∞

0

dxx3e−x,

(20)

where the integral is just a number. Thus, we see that the heat capacity goes to zero like T 2 following a power law
behavior as expected in Debye’s approximation.


