
Final Exam
P555
May 11, 2023

SHOW ALL YOUR WORK TO GET FULL CREDIT!

Problem 1: In the periodic table we see that the Pr atom has an electronic structure given by 4f35d06s2.

a) Use Hund rules to obtain S, L, and J for the ground state of the Pr atom. Draw the energy levels in the relevant
shells and indicate the electronic placement. Provide your final result using spectroscopic notation: 2S+1LJ . (Hint:
remember that the spectroscopic notation for L is S, P, D, F, G, H, I, J, K, etc.) (5 points)
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FIG. 1:

Notice that the 6s-shell is filled and the 5d-shell is empty and thus, their electrons do not contribute to the magnetic
quantum numbers. Thus, we need to look at the 4f-shell which is less than half-filled (see Fig. 1). We see that the
total spin is S = 3/2, and L = 6, then J = |L− S| = 9/2 since the shell is less than half-filled and the spectroscopic
notation for the ground state of the atom is:4I9/2.

b) What is the degeneracy of the ground state of Pr? (5 points)

The degeneracy of the ground state is

2J + 1 = 9 + 1 = 10. (1)

c) Calculate the Landé factor g for the Pr atom. (5 points)

The Landé factor is given by

gPr =
1

2

[3J(J + 1)− L(L+ 1) + S(S + 1)]
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=
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(2)



d) What is the energy splitting ∆E linear in the magnetic field B for the ground state of a Pr atom placed in a
magnetic field B? Provide the energy of each energy level as a function of B. (5 points)

The energy splitting is given by

∆E = gµBB =
8

11
µBB. (3)

The degeneracy 10 is now split and each level will have energy

E = E0 + JzgµBB = E0 + Jz
8

11
µBB, (4)

where E0 is the energy of the degenerate level and Jz = ±9/2,±7/2,±5/2,±3/2, and ±1/2. Thus, E−9/2 = E0 −
36
11µBB, E−7/2 = E0−

28
11µBB, E−5/2 = E0−

20
11µBB, E−3/2 = E0−

12
11µBB, E−1/2 = E0−

4
11µBB, E1/2 = E0+

4
11µBB,

E3/2 = E0 +
12
11µBB, E5/2 = E0 +

20
11µBB, E7/2 = E0 +

28
11µBB, and E9/2 = E0 +

36
11µBB.

e) When the Pr atom is ionized the first electrons being lost are the ones in the 6s shell. Knowing this, provide the
electronic structre of the ion Pr3+. (5 points)

The electronic structure of Pr3+ is 4f25d06s0.

f) Use Hund rules to obtain S, L, and J for the ground state of the Pr3+ ion. Draw the energy levels in the relevant
shells and indicate the electronic placement. Provide your final result using spectroscopic notation: 2S+1LJ . (Hint:
remember that the spectroscopic notation for L is S, P, D, F, G, H, I, J, K, etc.) (5 points)
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FIG. 2:

Notice that now the 6s-shell and the 5d-shell are empty and thus, their electrons do not contribute to the magnetic
quantum numbers. Thus, we need to look at the 4f-shell which is less than half-filled (see Fig. 2). We see that the
total spin is S = 1, and L = 5, then J = |L − S| = 4 since the shell is less than half-filled and the spectroscopic
notation for the ground state of the atom is:3H4.

g) Calculate the Landé factor g for the Pr3+ ion. (5 points)



gPr3+ =
1

2

[3J(J + 1)− L(L+ 1) + S(S + 1)]

J(J + 1)
=

1

2

60− 30 + 2

20
=

4

5
= 0.8.

(5)

h) What is the degeneracy of the ground state of Pr3+? (5 points)

The degeneracy of the ground state is

2J + 1 = 8 + 1 = 9. (6)

i) Is the separation between energy levels at a given field B larger in Pr or in Pr3+? Why? (5 points)

The separation between levels ∆E = gµBB is proportional to g since gPr3+ = 0.8 > gPr = 0.727 we see that the
separation between levels for a fixed magnetic field B will be larger for Pr3+.

j) What is the magnetization M of a sample of Pr3+ that contains N atoms in a volume V ? (5 points)

The magnetization is given by

M = nµBgJBJ(βµBgJB) =
N

V
µB

4

5
4B4(

16

5
βµBB) =

16

5

N

V
µBB4(

16

5
βµBB). (7)

Using that

BJ(x) =
2J + 1

2J
coth(

2J + 1

2J
x)−

1

2J
coth(

c

2J
), (8)

we see that

B4(
16

5
βµBB) =

9

8
coth(

18

5
βµBB)−

1

8
coth(

2βµBB

5
). (9)

Then,

M =
N

V

2

5
µB [9 coth(

18

5

µBB

kT
)− coth(

2

5

µBB

kT
)]. (10)

k) How do you expect the magnetization M calculated in (j) to evolve from kT ≫ µBB to kT ≪ µBB? Why? (5
points)

I expect at high T , i.e. x very small the magnetization will be zero because the spins will be disordered due to
the thermal fluctuations; as the temperature starts to decrease, and x increases, the magnetization will increased
linearly with x, Curie’s law, and when the temperature becomes very small compared with B, i.e., when x is very
large, the magnetization will reach its maximum possible value that corresponds to full polarization of the spins since
the magnetic energy now prevails over the thermal energy.

l) Now provide the actual value of the magnetization M calculated in (j) when kT ≫ µBB and when kT ≪ µBB
and confirm your answer to point (k). (5 points)

For kT ≫ µBB we see that x is small and we can use the expansion of coth(x) in Eq. 10. Then,

lim
x→0

M =
N

V

64

15

µ2
BB

kT
, (11)

which vanishes when x = 0 and satisfies Curie’s law. For kT ≪ µBB we see that x is large and we can replace

coth(x) = cosh(x)
sinh(x) ≈ ex

ex ≈ 1 in Eq. 10. Then,

lim
x→∞

M =
N

V

16

15
µB , (12)



which is the maximum value that the magnetization can have.

Problem 2: A one-dimensional solid made of N atoms with one atom at each point of the Bravais lattice with
lattice constant a has a phonon density of states given by

DD(ω) =
1

πc
Θ(ω − ωD), (13)

in the Debye approximation, with c the speed of sound, ωD = πcn is the Debye frequency, n = N/L is the atomic
density (L = Na), and Θ is the Heaviside function.

a) Explain Debye’s approximation and why it is important. What progress in our understanding of the heat capacity
did it allow? (5 points)

Debye’s approximation is important because it provided a model for the density of states of phonon modes according
to the low frequency dispersion of the acoustic modes and introducing a cut-off frequency ωD that is normalized by
the total number of modes. The model captures the power law dependence of C with T as T → 0 and reaches the
appropriate classical limit C = Nk at high T .

b) Write an expression for the heat capacity C of the one dimensional material in the Debye’s approximation. (5
points)

Using the expression provided for 3D we convert it to 1D:

CL = L

∫
∞

0

dωD(ω)
∂

∂T

~ω

(eβ~ω − 1)
. (14)

Now we use the Debye approximation for the density of states and we perform the derivative with respect to T
remembering that β = 1/(kT ):

CL =
L

πc

∫ ωD

0

dω
(~ω)2eβ~ω

kT 2(eβ~ω − 1)2
=

L~2

kT 2πc

∫ ωD

0

dω
ω2eβ~ω

(eβ~ω − 1)2
. (15)

c) What should be the heat capacity of the 1D material at very high temperature? Why? (5 points)

At very high temperature C = Nk according to Dulong and Petit law. We know that E = NkT due to the theorem
of equipartition of energy and C is given by the derivative of E with respect to T .

d) Now provide an expression for C when T → ∞ and verify your answer to part (c). (5 points)

In this case we can use ex = 1 + x+ .... Then

lim
T→∞

CL =
L~2

kT 2πc

∫ ωD

0

dω
ω2

(β~ω)2
=

k2T 2L

kT 2πc

∫ ωD

0

dω =
kL

πc
ωD =

kL

πc
πc

N

L
= Nk. (16)

e) How do you expect the heat capacity to evolve as a function of the temperature from T = 0 to T → ∞? Why?
(5 points)

At low temperature I expect the heat capacity to increase from zero following a power law and reach the value Nk
at very high temperature.

f) Now provide an expression for C when T → 0 and verify your answer to part (e). Hint: you can express your
results in terms of an integral that does not depend on the temperature. (5 points)

We will define x = β~ω, then dx = β~dω, and xD = β~ωD = ~ωD

kT . Then we obtain

CL =
Lk2T

~πc

∫ xD

0

dx
x2ex

(ex − 1)2
. (17)

When T → 0 we see that xD → ∞ then we obtain

CL =
Lk2T

~πc

∫
∞

0

dx
x2ex

(ex − 1)2
. (18)



Since the definite integral is now a number independent of T we see that C goes to 0 linearly in T , which is the
expected porwer law behavior.

Useful information:

BJ(x) =
2J + 1

2J
coth(

2J + 1

2L
x)−

1

2J
coth(

c

2J
). (19)

coth(x) ≈
1

x
+

x

3
+ ... (20)

Heat capacity in 3D:

CV = V

∫
∞

0

dωD(ω)
∂

∂T

~ω

(eβ~ω − 1)
. (21)


