P555 May 15, 2024 ## SHOW ALL YOUR WORK TO GET FULL CREDIT! The final has two problems. The first one is worth 50 points and the second one 30. The second problem has 2 bonus questions indicated in blue worth 10 points each. Thus, there are 100 points available, but 80 points should give 100% of the grade. | Problem 1 : In the periodic table we see that the Zr atom has an electronic structure given by [Kr]4d ² 5s ² . | |---| | a) Use Hund rules to obtain S and L for the ground state of the Zr atom. Draw the energy levels in the relevant shells and indicate the electronic placement. (5 points) | | | | | | | | | | | | b) What is the degeneracy of the ground state of Zr based on its L and S values? (5 points) | | | | | | c) What are the allowed values of J for this atom? (5 points) | | | | | | | | d) Provide the degeneracy for each of the values of J that you found in (c) and compare with the result you found in part (b). (5 points) | | | | | | | | e) Now, using Hund's rules, find the value of J for the ground state of the Zr atom and, using the results you found in (a) provide the values for L , S , and J of the ground state of the atom of Zr using spectroscopic notation: ${}^{2S+1}L_J$. (Hint: remember that the spectroscopic notation for L is S , P , D , F , G , H , I , J , K , etc.) (5 points) | | | | f) Calculate the Landé factor g for the Zr atom. (5 points) | |---| | g) What is the energy splitting ΔE linear in the magnetic field B for the ground state of a Zr atom placed in a | | magnetic field B ? Provide the energy of each energy level as a function of B , in terms of μ_B and E_0 , where μ_B is the Bohr magneton and E_0 is the energy of the degenerate ground state when $B=0$. (5 points) | | h) What is the magnetization \mathbf{M} of a sample of Zr that contains N atoms in a volume V ? (5 points) | | | | | | i) How do you expect the magnetization M calculated in (h) to evolve from $kT \gg \mu_B B$ to $kT \ll \mu_B B$? Why? (5 points) | | j) Now provide the actual value of the magnetization ${\bf M}$ calculated in (h) when $kT\gg\mu_B B$ and when $kT\ll\mu_B B$ and confirm your answer to point (i). (5 points) | $$\omega(k_x, k_y, k_z) = \omega_0 \left[\sin^2(\frac{k_x a}{2}) + \sin^2(\frac{k_y a}{2}) + \sin^2(\frac{k_z a}{2})\right]^{1/2}.$$ (1) Notice that the spectrum is independent of the polarization ν . Bonus question (10 points): what is the degeneracy of this branch? Explain. a) Consider the first Brillouin zone of this crystal centered at the origin, i.e. $\Gamma = (0,0,0)$, and provide its boundaries along the k_x , k_y , and k_z directions.(5 points) - b) Now in momentum space draw arrows identifying the following directions (5 points): - i) $\Gamma \to X$ where $\Gamma = (0,0,0)$ and $X = (\frac{\pi}{a},0,0)$. ii) $\Gamma \to K$ where $\Gamma = (0,0,0)$ and $K = (\frac{\pi}{a},\frac{\pi}{a},0)$. iii) $\Gamma \to L$ where $\Gamma = (0,0,0)$ and $L = (\frac{\pi}{a},\frac{\pi}{a},\frac{\pi}{a})$. - c) Now provide an expression and sketchs of ω versus **k** along the following directions (5 points): - i) $\Gamma \to X$. Useful information: $$\mathcal{B}_{J}(x) = \frac{2J+1}{2J} \coth(\frac{2J+1}{2J}x) - \frac{1}{2J} \coth(\frac{x}{2J}).$$ (2) $$\lim_{x \to 0} \coth(x) \approx \frac{1}{x} + \frac{x}{3} + \dots$$ (3)