
Second Midterm Exam
P555

April 11, 2024

SHOW ALL YOUR WORK TO GET FULL CREDIT!

The items in blue, including the Bonus question, are the take home part of the test. Submit a pdf file with your at
home work not later that April 12 at 11PM.

Problem 1: A two dimensional crystal has one atom of valency one in a simple rectangular Bravais lattice with
primitive vectors a1 = (4a, 0) and a2 = (0, a).

a) Find a set of primitive vectors for the reciprocal lattice and provide their length in terms of a. (5 points)

The primitive vectors of the reciprocal lattice are given by

b1 = (
π

2a
, 0), (1)

and

b2 = (
2π

a
, 0). (2)

We see that they satisfy ai.bj = 2πδij as expected.

b) In Fig. 1 the primitive unit cell in reciprocal space is shown for the given rectangular lattice. Label the boundaries
of the unit cell shown along kx and ky in terms of a. (5 points)

c) Calculate the radius of the free fermion electron Fermi sphere (circle in 2D) at T = 0 in terms of a. (10 points)
We found in the homework that in 2D

kF =
√

2πn, (3)

where the density of electrons n is given by

n =
N

A
=

1

4a2
. (4)

Notice that N = 1 because each atom in the primitive unit cell provides 1 electron and A is the area of the rectangular
primitive unit cell, i.e. A = 4a2. Then,

kF =
√

2πn =

√
2π

4a2
=

1

a

√
π

2
=

0.40π

a
. (5)

Alternative way:
We know that the FBZ can hold 2N electrons. Since the atoms provide N electrons this means that the system is

“half-filled” and thus, the area of the Fermi sphere (circle) has to be equal to half the area of the FBZ. This means
that

πk2
F =

1

2

2π

a

π

2a
=

π2

2a2
. (6)

Then,

kF =
1

a

√
π

2
=

0.40π

a
, (7)

as expected.

d) Draw this sphere to scale if Fig. 1. (5 points)

e) Provide the Fermi energy, EF for the free electrons. (5 points) The Fermi energy is given by

EF =
~2k2

F

2m
=

~2(
√

π
2 )2

2ma2
=

~2π

4a2m
. (8)
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FIG. 1: The primitive unit cell is indicated in red. The FS for free electrons is indicated in purple. The Fermi momentum kF
is also indicated. The blue lines indicate the tight binding FS for a half-filled system. The brown lines indicate the distortion
of the FS for free electrons due to the effects of a weak periodic potential.

f) Draw the energy for the free electrons in the reduced scheme, i.e., inside the first Brillouin zone, along the kx
direction. Start at k = (0, 0) (which is the center of the Brillouin zone; you do not need to draw the energy for the
negative values of kx inside the BZ because by symmetry it will be the same than on the positive side) and end at
(X, 0) where X is the boundary of the first Brillouin zone, and indicate the Fermi energy. Hint: include as many
bands as needed to indicate the place of the Fermi energy.(10 points)

For free electrons the energy is given by

E =
~2k2

2m
, (9)

which is a parabola that starts at 0 for k = 0 and goes up to

EX =
~2k2

X

2m
=

~2π2

32a2m
, (10)

where we have used that kX = π
4a . The parabola continues outside the FBZ, but it gets folded (or we can use the

parabola centered at the first nearest neighbor site along x in the reciprocal lattice). At crystal momentum zero the
actual momentum for the electron will be K+ 0 where K = ( π2a , 0); thus for what would become the second band we
get that

EΓ =
~2k2

Γ

2m
=

~2K2

2m
=

~2π2

8a2m
. (11)



The Fermi energy, found in (e) is given by

EF =
~2π

4a2m
. (12)

We see that EF crosses the second band as expected because the Fermi sphere ends outside the FBZ along the x axis.

FIG. 2: The energy of the free electrons in the reduced scheme are indicated in the FBZ along the Γ−X direction. The dotted
vertical line indicates the boundary of the FBZ. The Fermi energy EF is indicated by the orange line. The blue lines indicate
the effects of the weak periodic potential. A gap opens at the boundary of the BZ and two bands appear.

g) If a weak periodic potential were applied, indicate in your previous drawing how E(k) would be modified. You
do not need to do any calculation, but explain in words the rational for your drawing, i.e., in what part of the curves
the main changes occur and why.(5 points)

The weak periodic potential breaks the degeneracy of the energies at the boundary of the Brillouin zone opening a
gap and producing the energy bands. In Fig. 2 we can see qualitatively how the gap opens forming two bands.

h) Draw the shape of the Fermi surface under the influence of the weak periodic potential in Fig. 1. (5 points)

See the figure.

i) Now consider the case in which the electrons are tightly bound to the atoms. In this case the energy is given by
Ek = −2t(cos 4kxa+ cos kya). What is the bandwidth of this energy band? (5 points)

The bandwidth is given by the difference between the maximum and minimum energy. We see that the minimum
occurs at k = (0, 0) and it is Emin = −4t while the maximum occurs when the cosines reach their minimum value,
i.e. -1. This happens when kx = ± π

4a and ky = ±πa with Emax = 4t. Then the bandwidth is W = 8t.

j) Considering that the atoms contribute one electron and the symmetry of the energy dispersion, what is the Fermi
energy now?(5 points).

Now the Fermi energy is 0, since with N electrons half of the states are doubly occupied and since the dispersion is
symmetric with respect to zero, half the available states are above zero and the other half are below zero, thus, this
is where the Fermi energy has to be.



k) Draw the shape of the Fermi surface in Fig. 1. (5 points)

We need to find the values of kx and ky that satisfy E(k) = 0. We can see that this is satisfied for (kx, ky) = (± π
4a , 0),

(kx, ky) = (0,±πa ), and (kx, ky) = (± π
8a ,±

π
2a ). These points describe the indicated diamond inside the FBZ indicated

in Fig. 1 with blue lines.

l) Draw the energy for the tight binding model inside the first Brillouin zone, along the kx direction. Start at
k = (0, 0) and end at (X, 0) where X is the boundary of the first Brillouin zone, and indicate the Fermi energy. (5
points)

FIG. 3: The tight-binding energy in the FBZ along the Γ −X direction. The Fermi energy EF is indicated by the orange line.

Problem 2: Consider a one-dimensional crystal with lattice constant a and a basis of two atoms. At v1 = 0 the
atoms have mass M = 2m at v2 = a/2 the atoms have mass m. The system has PBC. In class we found that the
frequencies of oscillation as well as the displacement of the atoms are obtained from solving the following eigenvalues
and eigenvectors problem: (

M1ω
2 − 2K 2K cos(ka2 )

2K cos(ka2 ) M2ω
2 − 2K

)(
ε1
ε2

)
=

(
0
0

)
(13)

Finding the eigenvalues we obtain that

ω± =
√
K

√
(M1 +M2)± [M2

1 + 2M1M2 cos(ka) +M2
2 ]1/2

M1M2
. (14)

Here M1 and M2 are the masses of the two atoms in the basis and you can use that the spring constant K = mω2
0 ,

i.e., a constant, but written in a way that will simplify the algebra.
a) In the figure you can see ω± versus k. Indicate which branch is acoustic. Is there an optical branch? Why?(5

points)



FIG. 4: Phonon dispersion relation. The acoustic and optical branches are indicated as well as the vibration modes of the
atoms for k = π

2a
.

There is an optical branch because there are two ions in the basis.
b) What is the speed of sound in this system? Hint: Check your units in your final result. (10 points)

We need to focus on the acoustic branch and obtain ω− for very small k. Let’s replace K, M1, and M2 in the
expression for ω−:

ω− = ω0

√
3− [4 + 4 cos(ka) + 1]1/2

2
= ω0

√
3− [5 + 4 cos(ka)]1/2

2
. (15)

We need to obtain the behavior for k → 0 keeping the lowest order k-dependence; thus, we replace cos(ka) ≈ 1− k2a2

2 .
Then we obtain:

ω− ≈ ω0

√
3− [5 + 4(1− (ka)2

2 )]1/2

2
= ω0

√
3− [9− 2(ka)2)]1/2

2
= ω0

√
3− 3[1− 2

9 (ka)2)]1/2

2
. (16)

Now we use that (1 + x)1/2 ≈ 1 + x
2 when x� 1 and we obtain:

ω− ≈ ω0

√
3− 3[1− 1

9 (ka)2]

2
= ω0

√
3

9

(ka)2

2
= ω0

ka√
6

=

√
6

6
ω0ka. (17)

The speed of sound is given by

c =
dω

dk
=

√
2

6
ω0a. (18)

c) Now consider k = π/2a and:



i) Provide the values of ω± in terms of ω0. (5 points)
For k = π/2a we know that cos ka = 0. Then:

ω± = ω0

√
3± [4 + 1]1/2

2
= ω0

√
3± 51/2

2
. (19)

Thus,

ω− = ω0

√
3− [4 + 1]1/2

2
= ω0

√
3− 51/2

2
= 0.618ω0. (20)

and

ω+ = ω0

√
3 + [4 + 1]1/2

2
= ω0

√
3 + 51/2

2
= 1.618ω0. (21)

ii) Indicate in what direction the atoms of the basis are moving in the acoustic branch and plot it by adding arrows
to the ions shown in Fig. 4. Hint: Find the eigenvectors.(5 points)

Now the matrix equations are given by(
2(ω2 − ω2

0) ω2
0

√
2

ω2
0

√
2 (ω2 − 2ω2

0)

)(
ε1
ε2

)
=

(
0
0

)
(22)

Since we found ω in terms of ω0 we can divide the equation by ω0 and we obtain for the accoustic branch:(
2(0.6182 − 1)

√
2√

2 (0.6182 − 2)

)(
ε1
ε2

)
=

(
0
0

)
(23)

(
−1.236 1.41

1.41 −1.618

)(
ε1
ε2

)
=

(
0
0

)
(24)

Thus,

−1.236ε1 + 1.41ε2 = 0. (25)

Then,

1.41ε2 = 1.236ε1, (26)

and

ε2 =
1.236

1.41
ε1 = 0.8765ε1. (27)

Since ε21 + ε22 = 1 we obtain that

1 = ε21 + 0.87652ε21 = 1.7684ε21. (28)

Then,

ε1 =
1√

1.7684
= 0.7519 (29)

and

ε2 = 0.8765ε1 = 0.65911 (30)

We see that both atoms move in the same direction with the displacement of the heavy ion slightly larger than the
one for the lighter one.



iii) Indicate in what direction the atoms of the basis are moving in the optical branch and plot it by adding arrows
to the ions shown in Fig. 4. Hint: Find the eigenvectors.(5 points)

Now the matrix equations are given by(
2(ω2 − ω2

0) ω2
0

√
2

ω2
0

√
2 (ω2 − 2ω2

0)

)(
ε1
ε2

)
=

(
0
0

)
(31)

Since we found ω in terms of ω0 we can divide the equation by ω0 and we obtain for the accoustic branch:(
2(1.6182 − 1)

√
2√

2 (1.6182 − 2)

)(
ε1
ε2

)
=

(
0
0

)
(32)

(
3.2358 1.41
1.41 1.6179

)(
ε1
ε2

)
=

(
0
0

)
(33)

Thus,

3.2358ε1 + 1.41ε2 = 0. (34)

Then,

1.41ε2 = −3.2358ε1, (35)

and

ε2 =
−3.2358

1.41
ε1 = −2.2949ε1. (36)

Since ε21 + ε22 = 1 we obtain that

1 = ε21 + 2.29492ε21 = 6.2665ε21. (37)

Then,

ε1 =
1√

6.2665
= 0.3994 (38)

and

ε2 = −2.294ε1 = −.9163 (39)

We see that the atoms move in opposite direction with the displacement of the heavy ion much smaller than the
one for the lighter one.

Bonus: Now assume that M = m. Plot the resulting phonon dispersion relation and discuss the changes with
respect to the dispersion shown in Fig. 4.(10 points)

Now all the atoms are the same, thus, the lattice constant becomes a/2 and there is no basis. This means that we
will have only one acoustic branch in an extended BZ that goes from −2π/a to 2π/a. In the original reduced BZ we
see that the original optical band, indicated in red, is now the folded acoustic band since there is no gap at k = ±π/a.



FIG. 5: Phonon dispersion relation. There is only an acoustic band, indicated in black, because all the atoms are the same.
The lattice constant is now a/2 and thus, the FBZ has doubled in size. The red line is the folded acoustic branch.


