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Group theory allows us to study various aspects of chemical compounds and their physical prop-
erties. From axis rotation to symmetrical tendencies, it is very useful to a structural chemist.
Within the topic of group theory, there are many subtopics, including discreet groups and continu-
ous groups. Molecules are usually associated to discreet groups. Things such as angular momentum
and spin are associated to continuous groups. Continuous groups, also called Lie groups, help to tie
the chemistry components of group theory and mathematics together even closer. This paper will
begin with the basic elements of group theory, then introduce continuous groups, and then give an
example of a Lie group.

PACS numbers:

I. INTRODUCTION

A group can be defined as a set of objects or operations,
rotations or transformations that may be multiplied to
form a well-defined product.1To be defined as a group, a
set of elements must follow certain rules. The four group
postulates are:

1. The product of any two elements in the group and
the square of each element must be an element of
the group.

2. One element in the group must commute with all
others and leave them unchanged.

3. There exists an element in each group called the
identity. Its multiplicative is equal to 1 and its
additive is equal to 0. It may be found in the form
of a matrix,

I =
(

1 0
0 1

)
. (1)

4. The associative law must hold

A(BC) = (AB)C. (2)

5. Every element must have a reciprocal which is also
an element of the group. The reciprocal of a prod-
uct of 2 or more elements is equal to the product
of the reciprocals reversed

(AB)−1 = B−1A−1.2 (3)

II. BASIC ELEMENTS OF GROUP THEORY

Groups can also be related to one another. There
may exist a function between the two groups. If this
correspondence preserves the group multiplication, we

say that the two groups are homomorphic, meaning the
transformation preserves the operations of the first set.
If the correspondence is 1 to 1, still preserving the group
multiplication, then the groups are isomorphic, or have
the same form.1 For a crystal, a symmetry group con-
tains a finite number of rotations and reflections. There
are two types of groups- discreet and continuous.1

III. HISTORY OF CONTINUOUS GROUPS

Credit for introducing continuous groups into literally
all branches of math is mainly due to the work of mathe-
maticians Sophus Lie and Felix Klein.3 Lie is considered
to be one of the last great mathematicians of the 19th
century, and continuous groups are now more commonly
known as Lie groups.3 Lie and Klein’s research was to
a certain extent inspired by their deep interest in the
theory of groups and in various aspects of the notion of
symmetry. However after the initial period of joint stud-
ies their areas of scientific work diverged. Lie devoted
his life to the theory of continuous groups. His theory
rested on his discovery of the intimate connection be-
tween continuous groups and specific algebraic systems.3
Lie concluded that it is always possible to assign a Lie
group a corresponding Lie algebra.3 These groups were
used as a tool to solve or simplify ordinary and partial
differential equations.4

IV. PROPERTIES OF LIE GROUPS

There are two kinds of Lie groups, real Lie groups and
complex Lie groups, depending on whether the base man-
ifolds are real or complex manifolds. Both are important
and the theories can be constructed in the same way.5For
purpose here, the focus will remain on real Lie groups. A
given Lie group G has a unique universal covering space
which can also be defined as a Lie group paired with its
respective algebra.6 A Lie group can also be defined as
a topological group which can be equipped with an an-
alytic atlas in such a way that the group operators are



analytic. In similar terms, a topological group is said to
be a Lie group if it possesses a compatible analytic atlas.7

The structure of each group G is described by two basic
maps: the multiplication

n : G x G = G, m(ab) = ab (4)

and the inverse

iG → Gi(g) = g−1.6 (5)

If G has an extra geometric structure we require the
compatibility o these maps with it. Thus we say that a
group G is:

1. a topological group

2. a Lie group

3. a complex analytic group

4. a finite group if F is also:

• a topological space

• a differentiable manifold

• a complex and analytic manifold and

• if two maps, m, i are compatible with the
given structure, ie are continuous, differen-
tiable complex analytic or regular algebraic.6

A Lie group can be thought of as an imitation of a
topological group. Let G be the topological group. Sup-
pose there is an analytic structure on the set G, compat-
ible with its topology, which converts it into an analytic
manifold and for which the map

(x, y) → xy(x, y ε G)× → x−1(x ε G) of G×G (6)

into G where G and G are both analytic.8

A. Lie algebra

Given a Lie group G, we will associate to it a Lie al-
gebra g (defined as the algebra over a Lie space) and an
exponential map

exp : g → G. (7)

An algebra with a product [a b] satisfy the antisymme-
try axiom and the Jacobi identity is called a Lie algebra.
[a, b] is called a Lie bracket.6The Lie axiom states that

[a, b] = −[b, a] antisymmetry6 (8)

and

[a[b, c]] + [b[c, a]] + [c[a, b]] = 0 Jacobi identity6 (9)

Lie algebra, a form of differential geometry, applies to
Lie groups. A Lie product states that

[a, b] = ab− ba.6 (10)

The Lie algebra g can be defined as the Lie algebra
of a vector field acting on G. In particular, this ap-
plies to linear representations of the Lie algebra. Con-
versely a homomorphism of Lie algebras integrates to a
homomorphism of Lie groups, provided that G, is simply
connected.6The exponential map is obtained by integrat-
ing these vector fields proving that, in this case, the asso-
ciated 1-parameter groups are global. A homomorphism

Φ : G1 −→ G2 (11)

of Lie groups induces a homomorphism

dΦ : g1 −→ g2 (12)

of the associated Lie algebras.6Lie’s essential idea was
to study elements R in a group G that are infinitesimally
close to the unity of G

RΨ =
(

cosψ sinψ

−sinψ cosψ

)
= I2cosψ+iσ2sinψ = exp(iσ2ψ).1

Rotation of functions and orbital angular momentum
in the foregoing discussion the group elements are matri-
ces that rotate the coordinate ds. Now let us hold the
coordinates fixed and rotate a function

Ψ(xyz) (13)

relative to our fixed coordinates x’ = R(x)

RΨ(xyz) = Ψ′(xyz) = ψx′.1 (14)

V. USES OF LIE GROUPS

The electron at rest can exist in two independent
states, which can be labeled as ”spin up” and ”spin
down.” To describe a particle with two internal degrees of
freedom, we must set up a two-component wave function
to represent the particle9

The electron will translate from an SU(2, c) group to
an SO(3, r) group, since SO(3, r) is a 2 → 1 homo-
morphic image of SU(2, c). By definition, SO (3, r) is
a three-dimensional special orthogonal rotational group,
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where SU(2, c) is a 2x2 matrix defined as a special uni-
tary group.9

Consider the U2 group of 2 x 2 matrices. Any Hermi-
tian 2x2 matrix may be written as a linear combination
of the following four matrices:10

1 =
(

1 0
0 1

)
, (15)

τx =
(

0 1
1 0

)
, (16)

τy =
(

0 −i
i 0

)
, (17)

τz =
(

1 0
0 −1

)
, (18)

letting these four matrices being defined as he infinites-
imal operators of the group U2. If the unitary matrices
are restricted to having a determinate equal to +1, then
the group is called SU2. The restriction from U2 to SU2

simply removes the freedom to change the phase of both
states of the single nucleon simultaneously. These matri-
ces are the same as the spin matrices for a particle with
s = 1/2.10

We will use this to show the SU(2)→ SO(3) 2→1 ho-
momorphism. The 2→1 ratio can be interpreted that as
for every two items of SU(2), there is 1 item in the SO(3)
matrix.9

ψ = u1(x)
(

1
0

)
+ u2(x)

(
0
1

)
=

(
u1(x)
u2(x)

)
. (19)

The state space describing such a particle is then a
tensor product space of the form

C2

⊗
H4. (20)

The C2 is a complex two-dimensional space, called a
spinor space, and H 4 is a Hilbert space of complex-valued
functions defined on four-dimensional space-time.9

Figure one shows the visualization of the two indepen-
dent internal states of the electron. If we rotate the vector
|v > in C2 four successive times through Π/2 we return
to our starting place. However, our physical picture for
the spin has rotated through 4Π.9

Figure 2 shows these operations. The states

±|v 1
2

> (21)

both represent an electron in the spin up state, whereas

FIG. 1: When the electron is in a ”spin up” state (top right),
we represent it in a complex two-dimensional space C2 (top
left). The ”spin down” state is represented by bottom right
and bottom left respectively.

FIG. 2: As we rotate a state |v > in a C2 successfully four
times through π/2 about any fixed axis, we wind up where we
started. In the meantime, the representative of the physical
state in R3 has returned twice to its original orientation. We
have transferred the Homomorphism that exists between the
groups SU(2,c) and SO(3, r) onto the vector spaces C2 and
R3 in which these groups act as changes of bases.

±|v−1
2

> (22)

both represent an electron in the spin down state.9
This is a manifestation of the 2→1 nature of the group

homomorphism SU(2,c)→ SO(3,r) in terms of the vector
spaces on which these groups act.

A2Π rotation of the axes in R3, which leaves R3 un-
changed, should have no effect on the measurement of the
electron spin, even though it corresponds to a Π rotation
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in C2. This is true, since only the matrix elements of the
spin are measurable:9

< φ|σ|φ > (23)

Under a Π rotation in C2, the matrix elements become

< φ|eiθ · σ/2†σeiθ · σ/2|ψ >≡< φ|−I2σ−I2|ψ >=< φ|σ|ψ >
(24)

It is exactly this quadratic transformation property of
matrix elements which allows us to associate two unitary
operations of SU(2) with each physical rotation operation
of SO(3).9

VI. CONCLUSION

In the end, it is evident that not only is group the-
ory important and terribly useful, but the Lie (contin-
uous) groups, with their particular rules, largely bridge
the gaps between chemistry, physics, and mathematics.
By writing the spin example in terms of a Lie group and
algebra, we can see their importance in the field of quan-
tum mechanics.
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