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The fourier transform is an operation that transforms one function of a real variable into a
different variable. A common application of fourier transforms in the sciences is the use of Fourier
Transform Infrared Spectroscopy (FTIR). In this technique, a Michelson interferometer is used to
expose a chemical compound to a wide range of light and determine its composition based on
its vibrational selection rules. A detector produces an interferogram of time verses intensity and
a fourier transform is used to deconvolute the linearly superimposed frequencies into a graph of
frequency verses intensity.

PACS numbers:

I. INTRODUCTION

When collecting data in a scientific experiment, a sig-
nal represents a certain piece of information. Collected
signals can be easily manipulated by representing data as
linear combinations of simple and well defined functions.
Fourier analysis represents signals in terms of sinusoidal
waves. By using sinusoidal waves, it is simpler to ma-
nipulate large sets of signals, as in data collection, for
practical applications. Signals mostly occur in the time-
domain representation and often the signal amplitude,
x(t), is given as a function of time, t. If the signal is
constantly defined at all times, with some constant in-
terval between instants of time, the signal is considered
a discreet signal. Fourier transforms are able to decon-
volute overlapping signals and determine the frequencies
present.1

The Fourier transform changes a function, f(t), from a
function with respect to time to a function that is given
as a function of frequency, which is generically defined as
g(ω). The exponential form of the transform is the most
common type of Fourier transform.2

g(ω) =
1√
2π

∫ ∞
−∞

f(t) exp(iωt)dt (1)

It is possible to use this relation to determine the in-
verse relationship.

f(t) =
1√
2π

∫ ∞
−∞

g(ω) exp(−iωt)dω (2)

These equations both have physical significance. We
can also move these relations to three dimensional space.2

g(k) =
1

(2π)3/2

∫
f(r) exp(i · k · r)d3r (3)

f(r) =
1

(2π)3/2

∫
g(k) exp(−i · k · r)d3r (4)

If the function f(t) is odd or even, it is possible to sine
and cosine functions rather than an exponential. For
an even function such that f(t)=f(-t), one can write the
exponential of equation (1) in its trigonometric form.2

g(ω) =
1√
2π

∫ ∞
−∞

f(t)(cosωt+ isinωt)dt (5)

g(ω) =

√
2
π

∫ ∞
−∞

f(t)cosωtdt (6)

The inverse Fourier transform can also be written using
the cosine function.

f(t) =

√
2
π

∫ ∞
0

g(ω)cosωtdω (7)

If the original exponential function is odd, f(t)=-f(-t),
then the sine function can be used to describe the orig-
inal exponential function as well as the inverse Fourier
relationship.2

g(ω) =

√
2
π

∫ ∞
0

f(t)sinωtdt (8)

f(t) =

√
2
π

∫ ∞
0

g(ωω)sinωtdω (9)

Note that for both the Fourier cosine transform and
the Fourier sine transform that only positive zeros of the
arguments.

An important first step in developing the theory for
Fourier Transform Infrared Spectroscopy is the ability
to use Fourier transforms to resolve a finite pulse into
sinusoidal waves. The transformation of a sine wave into
its frequency component is shown pictorally in Figure
one. The waves are given by sinωo t.3

f(t) = sinωot (10)



FIG. 1: A finite sine wave and its resulting Fourier transform,
illustrated as a function of frequency.

FIG. 2: Fourier transform about a central point.

Where t < Nπ
ωo

.
This corresponds to N cycles of our original wave train.

Because f(t) is odd, it is possible to use the Fourier sine
transform.3

g(ω) =

√
2
π

∫ Nπ/ωo

0

sinωotsinωtdt (11)

Integrating equation (11) gives the amplitude of the
original sine wave. The Fourier transform of this function
shows a high amplitude at ω=ωo . The amplitude of this
central peak depends on the value of N and is shown in
Figure two.

A common and very useful application of Fourier
Transforms in chemistry is the use of Fourier Transform
Infrared Spectrometry (FTIR). This technique is used to
analyze the group frequencies of various chemical com-
pounds based on their vibrational selection rules. Vi-
brational transitions are well defined and when exposed
to light of a corresponding frequency, a vibrational level
transition occurs and can be observed in a spectrum.
This can either be done by exposing the molecule to
one frequency at a time by using a diffraction grating
or grating spectrometer, or the molecule can be exposed
to a wide range of frequencies at one pass, such as with
a Michelson interferometer, and the absorption frequen-
cies can be deconvoluted later using Fourier techniques.
The latter is preferred technique since a larger range of
frequencies may be scanned in a single sweep rather than
scanning through frequencies individually. In FTIR, data
is collected as amplitude verse time and Fourier trans-
forms are used to transform the data to an amplitude

FIG. 3: A Fourier transform is able to determine the fre-
quencies present in a constructive interfering sine wave. The
bottom wave is the addition of the first two waves and its
resulting Fourier transform shows both frequencies.

verse frequency spectrum. In other words, spectral in-
formation is encoded such that the intensity distribution
at all frequencies is measured simultaneously by a single
detector, producing an interferogram. The Fourier trans-
form describes the resolution of a time-varying wave into
its constituent frequencies. This process is known as the
Fourier decomposition of waves. We can ”pick out” the
frequencies hidden in the superimposed time spectra.4
Figure three shows the addition of two sine waves and
the ability of a Fourier transform to determine each in-
dividual frequency.

II. APPLICATIONS

In FTIR, a broadband light source is exposed to a
chemical compound. Therefore, the signal at the de-
tector is a linear combination of excitation at different
wavelengths of light. Because these are independent of
one other the principle of superposition, where the pres-
ence of one excitation does not affect the response of a
system to another excitation, holds for FTIR.4

f(t) + g(t)→ F (t) +G(t) (12)

Where f(t) and g(t) are the original time functions and
F(t) and G(t) are the independent outputs of the Fourier
transform. The linear systems present in Fourier trans-
form infrared spectroscopy are not only linear, but ho-
mogeneous in that the excitation can be scaled linearly
and the corresponding Fourier response will also scale
linearly.4

Cf(t)→ CF (t) (13)
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FIG. 4: A typical Michelson interferometer.

The first step in Fourier transform infrared spectrome-
try is to pass light from a light source through a Michel-
son interferometer, as shown in Figure four. The light
is split at a beam splitter and takes two different paths.
One light path goes towards a fixed mirror, bounces back
to the beam splitter and on towards the sample or to-
wards a detector, while the second path moves towards
a movable mirror. When the mirrors are both the same
distance from the beam splitter , there is constructive in-
terference. There is also constructive when the two light
paths differ by an integer of the light wavelength. If the
path lengths are not whole integer wavelengths apart,
then destructive interference occurs.

The total Fourier transform gives a way to sum over
many frequencies, resulting in a total observed interfer-
ence given by I(t). The cosine Fourier transform is used
because the resulting interferogram is an even function.

I(t) =
∫ ∞

0

B(ω)cos(2πωt)dω (14)

where each frequency ω has a spectral intensity B(ω)
at position t. Because I(t) is a continuous function, it can
be decomposed into the sum of even and odd functions,
represented by e(t) ando(t).4

I(t) =
I(t) + I(−t)

2
+
I(t)− I(−t)

2
= e(t) + o(t) (15)

It is possible to relate the even and odd functions by
the fact that e(x) is an even function defined by I(t)=I(-t)
and o(t) is defined as I(t)=-I(-t). We can then construct
even and odd functions as a combinations of sines and
cosines.4

e(t) =
∫ ∞
−∞

Be(ω) cos(2πωx)dω (16)

o(t) =
∫ ∞
−∞

Bo(ω) sin(2πωt)dω (17)

But, by definition, odd integrals disappear when inte-
grated over all space so we are left with a function of our
observed intensity to be:

I(t) =
∫ ∞
−∞

B(ω) exp(i2πωt)dω (18)

It is possible to manipulate equation (19) to give an
equation for the frequency distribution, B(ω), for an ob-
served interferogram, I(t). Multiplying each side of equa-
tion (19) by [cos(2πω t)-isin(2πω t)] and integrating over
t we obtain:

∫ ∞
−∞

I(t)[cos(2πωt)− i sin(2πωt)]dt =

∫ ∞
−∞

∫ ∞
−∞

B(ω)[cos(2πωt)+i sin(2πωt)][cos(2πωt)−i sin(2πωt)]dω

(19)
This can be simplified as:

B(ω) =
∫ ∞
−∞

I(t) exp(−i2πωt)dt (20)

In reality, the interferogram is not a symmetric func-
tion due to instrumental limitations, and therefore, the
resulting spectrum is also not symmetric. A practical in-
terferometer has a finite optical path difference and the
optics have a finite size and reflectivity.4

III. CONCLUSION

Fourier transforms provide a pathway to transform a
function in one set of variables to a function in another
set of variables. One popular application of Fourier trans-
forms in science is the use of Fourier Transform Infrared
Spectroscopy (FTIR). By using a large range of infrared
frequencies at once to excite a chemical compound, it is
possible to deconstruct the interferogram into its com-
ponent frequencies. This allows for identification of vi-
brational energy levels of the molecule, and therefore the
ability to determine the functional groups of the molecule
and the ultimate chemical structure.
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