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Differential equations appear frequently in various areas of mathematics and physics. In this
paper the method of Green’s Functions as solutions to these equations will be discussed in length.
Also included will be various examples of physical problems where Green’s Functions solutions are

useful.

1. INTRODUCTION

In studying physics, it would be difficult to avoid the
presence of differential equations. These mathematical
constructs appear quite often and can be extremely var-
ied in type. For example, there is the equation of simple
harmonic motion (a homogeneous ordinary differential
equation):

Ry = (1)

There is also Poisson’s equation (an inhomogeneous par-
tial differential equation):
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Fortunately, there exist many ways, both analytical and
numerical, of solving these equations and others.

The method of Green’s Functions (named for English
mathematician and physicist George Green) is particu-
larly useful for the latter type of equation shown here.
In section 2 of this paper the general process of forming
a Green’s Function and the properties of Green’s Func-
tions will be discussed. In section 3 an example will be
shown where Green’s Function will be used to calculate
the electrostatic potential of a specified charge density.
In section 4 an example will be shown to illustrate the
usefulness of Green’s Functions in quantum scattering.
Finally, in section 5 a conclusion of all things discussed
will be given.

2. GREEN’S FUNCTIONS SOLUTIONS

Suppose we have a differential equation of the following
form:

Wm(r) = f(7) 3)

Where m(7) is the function to be determined, f(7) is a
term that contains m and derivatives of m and W is a
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linear operator. We also assume that this equation is
subjected to certain boundary conditions.

Now consider the idea that we can find a function
G(7,7)) that solves this particular differential equation
with a delta function as a source (or inhomogeneity) in-
stead of f(7):

WG(7,79) = 0(7 —76) (4)

As an example, let W = V2. Using Green’s Theorem [1]
on G(7,79) and m(7):

/ (mV2G — GV3m)dr = / (mVG — GVm) -dA (5)
\4 S

From the equations above:

If we interchange 7 and 7 (to be justified later):
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By performing the integral on the delta function and
adding we find [2]:

m(F) = /V G, ) f()dr  (10)
+ / (m(B)VG(F,73) — G(F ) Vm() (1)
S

We call G(7) the Green’s Function of this particular
differential equation.

If we can find a Green’s Function G(7) that satisfies
the equation above, then we can find our desired func-
tion. The whole problem then is to manipulate this for-
mula to give something useful, and such manipulations
are specific to the particular equation to be solved and
the geometry of the problem.

The derivation above is not the only way to solve for
the Green’s Function; it just happened to be the most



convenient since the linear differential operator was the
Laplacian.

Green’s Functions are always the solution of a §-like in-
homogeneity. However, it is worthwhile to mention that
since the Delta Function is a distribution and not a func-
tion, Green’s Functions are not required to be functions.

It is important to state that Green’s Functions are
unique for each geometry. However, you may add a factor
Go(7) to the Green’s Function G(7) where G (7) satisfies
the homogeneous differential equation in question|3]:

WGo(r) =0 (12)

Where W is a linear differential operator. They also rely
heavily on the specified boundary conditions; a Green’s
Function for one boundary may not be defined on other.

One of the most useful properties of Green’s Functions
is that they are always symmetric[4]:

G(a,b) = G(b,a)a #£b (13)

When calculating the Green’s Function earlier, we de-
pended on switching ¥ with rg; if the variables of this
Green’s Function were not symmetric we could not do
this. As such, it is worthwhile to prove the symmetry of
the variables in any Green’s Function.

Suppose we have two Green’s Functions G(7,77) and
G(7,73). We require that these equations satisfy the fol-
lowing equations [5]:

V- p(MVGF )] + q(NG(7, 1) = =0(F = 71) - (14)

V- p(MVG(F 1)) + q(MG(7,73) = =0(F = 73)  (15)

Here p(7) and ¢(7) are random functions of 7. We shall
specify the Green’s Functions further by imposing Dirich-
let boundary conditions [5] on them where G(7,77) and
G(7,75) will yield the same values over the surface S
of some volume. Should this condition not be met, the
Green’s Functions will disappear on S.

Multiplying the equation for G(7,r7) by G(7,r3) and
vice versa we find:

G(r,r2)V - [p(MVG(F,71)] (16)
G(rr)V - [p(MVG(T, )+ (18)

Subtracting the second equation from the first:

G(r,r3)V - [p(P)VG(7,71)] — (20)
G(r, )V - [p(MVG(F,r3)] = (21)
—G(7,73)0(F —71) + G(7,711)0(F — 73) (22)

Using the following product rule [1]
V- (fA) = f(V-A)+A-Vf (23)

we can change some terms in our equation:

V- [G(7, r3)p(P)VG(7, 71)] (24)
=V [G(7,r1)p(P)VG(F,13)] (25)
= —G(7,73)0(F —71) + G(7,71)d(F — 73) (26)
Performing a volume integral on both sides and using the

Divergence Theorem [1] to simplify the left side:
[ 6@ mpnvae.) (21)

s

~G(.i)p(MVG(F,r3)] - dA (28)
= —G(r1,73) + G(r3,71) (29)

By the boundary conditions imposed at the beginning,
the left hand side is zero. Hence:

G(ri,73) = G(r3,1r1) (30)

Thus proving the symmetry of Green’s Function.

3. EXAMPLE: ELECTROSTATIC
POTENTIAL(5]

Let us start with Poisson’s equation:
r
€0

V2= (31)
Suppose we have a collection of point charges q;. From
the study of electrostatics, we know the electric potential
of such a configuration:

1 Z k
= — 2
d) 47T60 % Tk (3 )

If instead of a discrete number of point charges we had a
continuous distribution of charge (let p be such a charge
density) then we have:

1 p(r') o
o = o | (3)
Where 7 is the vector pointing from the origin to the
field point, 7’ is the vector pointing from the origin to
the source point and dV’ is a volume element.

Observing Poisson’s Equation and the equation di-
rectly above, we are now in a position to try and find
a Green’s Function G(7,r7). Using the formalism from
section 2:

— —

V2G(F, 1) = =8(F — 1) (34)

We will now solve for G(7, 7 ). Employing Green’s Iden-
tity [1]:

-
!

/V (GG 1) — G(F, T V2()) AV (35)

. [3 (GG — GF V() -dA  (36)



Where dA is the surface element for the surface that sur-
rounds the volume V.

We shall consider the case where the surface term is
zero. This will simplify the problem:

| @V - G e av =0 0

/gb WW2G(F,r)dV! = /G

Plugging in for the values of V2G (7,

/ o(r YAV = / G(F”Zo)”(ﬁ)dv' (39)

So we find:

(r)av’'  (38)

) and nabla?p(7):

/ G(7, ) p(rdV’ (40)
eo

We are now in a position to find our Green’s Function.
From studies of Poisson’s Equation and Coulomb’s Law:

VZ% = —47d(r) (41)

Looking back at the original equation for V2G, we can
conclude:

- 1
G(rr)= ——— 42
() 4r|7 — 1| (42)
This yields for ¢:
L[ plr)

o(F) = av’ (43)

dmeq J |7 — 1|

Even though we knew the answer from the very begin-
ning, it is nice to see that the Green’s Function formalism
gives the correct results. Of course, there are other ex-
amples where we don’t know the answer from hindsight
and must rely on Green’s Functions to solve the problem.

4. QUANTUM SCATTERING

Suppose we have a beam of particles incident on a tar-
get (represented by a potential V' (7)). The particles that
hit the target scatter off of it as spherical waves; we repre-
sent those waves with the wave function (7). Obviously
() obeys the Schrodinger Equation [5]:

K2 o
— VR V) = B (44)
This will be more useful in the form of the Helmholtz

Equation. As such, we define k2 = QZ'QE and write:

2mV (7)

V() + K2(7) = —[-——=v(]  (45)

Ultimately, we w1ll want a solution that contains the in-

cident wave €’
tude of the Scattered wave [ (0
the asymptotic form:

,0). Thﬁs (7) will have

ezkr

()~ N7 4 fu(0,0) (46)

Here kg is the vector pointing in the direction of the in-
cident wave and k is the vector pointing in the direction
of the scattered wave.

By the general form of the Green’s Function found in
section 2:

vir) == | FEVEECE. B ()

Because this is meant to describe an outgoing wave that
approaches infinity, we set the surface term equal to zero.

We add a term to make ¢ (7) asymptotic:

- o 2m

Y(ri) = et — ﬁv(@)w(@)G(ﬁ,@)dsrz (48)
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Since we are working with the Helmholtz operator, our
Green’s Function will have the form [5]:

eik\ﬁ—r}\
G(ri,713) = ————— 49
(7, 72) dr|ri — 73| (49)
Hence we get the exact equation:
I 2m 6ik|r‘ifr_é|
q)y=erfomn— [ —V — 50
(1) = 7= | TR 3)0(63) P 60

By making approximations on v, we can get extremely
useful information out of this equation. For example: if
we assume the incident wave is not considerably changed
by the potential:

V() = e 1)

Plugging this into the integral:

. 2m = eik\rl 73|
wl(T_i) = 61 0T1 /‘; ﬁV(Té)@lkorQderQ
(52)
The above equation is known as the Born Approxima-
tion; it is very useful for scattering problems where the

potential is weak compared to the given potential.



5. CONCLUSION

There are numerous methods available to solve differ-
ential equations. At first glance, it may seem as though
the method of Green’s Functions is rather limited since

it can only be used on equations of a particular form and
by the fact that not all linear operators admit a Green’s
Function. Nevertheless, these kinds of equations do ap-
pear frequently in physics, so Green’s Functions prove to
be invaluable in the understanding of physical systems.
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