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Stokes’ Theorem is widely used in both math and science, particularly physics and chemistry.
From the scientific contributions of George Green, William Thompson, and George Stokes, Stokes’
Theorem was developed at Cambridge University in the late 1800s. It is based heavily on Green’s
Theorem which relates a line integral around a closed path to a plane region bound by this path.
Stokes’ Theorem is identical to Green’s Theorem, except one is working with a surface in three
dimensions instead of a plane in two dimensions. Stokes’ Theorem relates a surface integral to a
line integral around the boundary of that surface. Stokes’ Theorem can be used to derive several
main equations in physics including the Maxwell-Faraday equation, and Ampere’s Law.

I. INTRODUCTION

Sir George Gabriel Stokes’ name was given to the
theorem that we now know as Stokes’ Theorem, when
it was not he who invented the mathematical concept.
Stokes was a distinguished professor of math and
physics at Cambridge University where he made many
scientific contributions to fluid dynamics, optics, and
mathematical physics. Stokes first obtained knowledge
of this theorem that related a surface integral to that of
a line integral from William Thompson (Lord Kelvin) in
a letter in 1850.1 The theorem acquired its name from
Stokes’ habit of putting the theorem as a mathematical
problem on the Cambridge prize examinations, resulting
in its present name, Stokes’ Theorem.

George Green, a self-taught English scientist, privately
published ”An Essay on the Application of Mathematical
Analysis to the Theories of Electricity and Magnetism”
in 1828.2 Only 100 copies were printed, which mostly
went to his friends and family. Within this essay, a
theorem equivalent to what we know as Green’s theorem
was documented, but was not widely known at the time
of publication. Green entered Cambridge at the age of
40 to complete his undergraduate degree taking along
with him his essay on electricity and magnetism. Only
four years after graduating, Green died leaving behind
his essay.

William Thompson (Lord Kelvin) also studied at Cam-
bridge, and accidentally discovered a copy of Green’s es-
say in 1846. He quickly realized the importance of what
he had found and had the essay reprinted immediately.
It was Lord Kelvin who popularized Green’s work for fu-
ture mathematicians, and made further advancements in
math and science using Green’s essay as a basis.2

II. STOKES’ THEOREM

In order to understand Stokes’ Theorem, one must first
understand where it originated. Stokes’ Theorem is a
more complex version of Green’s Theorem,1 which states

FIG. 1: A physical representation of the components of
Greens Theorem.

the relationship between a line integral around a closed
path and a double integral over the plane region bound
by this path in R2 as shown Equation 1.

∮

∂D

F · ds =
∫ ∫

D

(∇xF)da (1)

D is the plane region and ∂D is the boundary of the
closed path encompassing the plane region (Figure 1).

The left-hand side of the equation integrates the func-
tion, F, with respect to the line enclosing the plane re-
gion evaluated over the boundary, ∂D. F is typically a
vector field. The right-hand side of the equation has
a double integral evaluating the curl of the vector field
over the plane region, D. If a third dimension is added
onto Green’s Theorem, it now becomes Stokes’ Theorem
(Equation 2).

∮

∂S

F · ds =
∫

S

(∇xF)da (2)

S is the three-dimensional surface region that is bound
by the closed path ∂S (Figure 2). The evaluation of
the integrals in R3 follows the same form as Green’s
Theorem, but is slightly more complex since a third
component has been added to the vector field. Stokes’
Theorem states that the line integral around the bound-
ary curve of S of the tangential component of F is equal
to the surface integral of the normal component of the
curl of F. One can think of Green’s Theorem as a special



FIG. 2: A physical representation of the components of Stokes
Theorem.

FIG. 3: A rectangle showing the interior and exterior paths
of the line integral.

case of Stokes’ Theorem or vice versa since they are
similarly related.

The orientation of the surface S will induce the positive
orientation of ∂S. Moving along ∂S in a counterclockwise
direction will yield the positive orientation of S, where as
moving along ∂S in a clockwise direction will result in the
negative orientation of S. Figure 2 assumes the positive
orientation. Another way to check the orientation is to
use the right hand rule with one’s thumb pointing in the
direction of the normal vector.

III. PROOF OF STOKES’ THEOREM

Looking at Stokes’ Theorem in more detail, it can be
broken down into a simple proof. From equation (2),
Stokes’ Theorem relates the surface integral of a deriva-
tive of a function and a line integral of that function with
the path of integration being the perimeter bounding the
surface3. If this surface is arbitrarily divided into many
small rectangles, the circulation about one rectangle in
the xy-plane can be observed (Figure 3). The circulation
can be set up as scalar integrals as shown by equation(3).

circulation1234 =
∫

1

Vx(x, y)dλx +
∫

2

Vy(x, y)dλy (3)

+
∫

3

Vx(x, y)dλx +
∫

4

Vy(x, y)dλy

Circulation1234 follows the path around the rectangle as
shown in figure (3). Each integral can be referred to
the point (x0 , y0) using a Taylor expansion to take into
account the displacement of line segments 1 and 3 as well
as segments 2 and 4. This results in equation(4).

circulation1234 = (4)

Vx(x0, y0)dx + [Vy(x0, y0) +
∂Vy

∂x
dx]dy +

[Vx(x0, y0) +
∂Vx

∂y
dy](−dx) + Vy(x0, y0)(−dy)

= (
∂Vy

∂x
− ∂Vx

∂y
)dxdy

If equation (4) is divided by dxdy, then the circulation
per unit area is∇×Vz which is given by the z-component
of the vector. If this is applied to our one differential
rectangle in the xy-plane, then equation (4) results in

∑

all sides

V · dλ = ∇×V · dσ (5)

dλ is the path taken around the interior and exterior of
the rectangle, V is the vector being evaluated, and dσ
is the area of integration. If this is applied to all of the
rectangles that make up the surface and using the defini-
tion of a Riemann integral, it is seen that the interior line
segments of the rectangles will cancel leaving only the ex-
terior line segments which make up the integral around
the perimeter of the surface. Next taking the limit as
the rectangles approach infinity with dx→ 0 and dy→ 0
results in equation 6

∑

exterior line segments

V · dλ =
∑

rectangles

∇×V · dσ (6)

Writing equation 6 in integral form results in Stokes’ The-
orem.

∮
V · dλ =

∫

S

∇×V · dσ (7)

IV. STOKES’ THEOREM APPLICATIONS

Stokes’ Theorem, sometimes called the Curl Theorem,
is predominately applied in the subject of Electricity and
Magnetism. It is found in the Maxwell-Faraday Law, and
Ampere’s Law.4 In both cases, Stokes’ Theorem is used to
transition between the differential form and the integral
form of the equation. In 1831 Michael Faraday conducted
three experiments. One in which he pulled a loop of wire
to the right through a magnetic field, one where he moved
the magnet to the left holding the loop still, and one
where both the loop of wire and the magnet were held
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still with the strength of the magnetic field changing.
The first two experiments resulted in motional emf, ε
= -dφ

dt , expressed by the flux rule. The last experiment
resulted in the fact that a changing magnetic field induces
an electric field as shown in equation 8.

ε =
∮

E · dl = −dφ

dt
(8)

where E is the electric field, dl is the vector element that
is part of the surface boundary, and dφ

dt is the change in
flux with respect to time. E can be related to the change
in B by replacing the change in flux with respect to time
with the integral of the change in magnetic field with
respect to time over a defined area. This is shown in
equation 9

∮
E · dl = −

∫
∂B
∂t

· da (9)

where B is the magnetic field, and da is the vector el-
ement that is part of the surface, generally in 2 dimen-
sions. Equation 9 is Faraday’s law in integral form. To
transform it into differential form, Stokes’ Theorem can
be used. Applying Stokes’ Theorem to the left hand side
of equation 9 yields

∮
E · dl =

∫ ∫
∇×E · da (10)

where E is the electric field, dl is a vector element that is
part of the surface boundary, and da is a vector element
that is part of the surface.5 Equation 10 carries sign am-
biguity due to the assumption that the Right Hand Rule
is used to find the direction of motion. As long as the in-
tegration of the surface does not vary with time, then we
can differentiate equation 10 with respect to time under
the integral sign resulting in equation 11

d

dt

∫ ∫
B · ds =

∫ ∫
∂B
∂t

· da (11)

Since B is also a function of the coordinate system, then
the partial derivative sign must be used. Combining
equation 10 and equation 11 results in

∫ ∫
∇×E · da =

∫ ∫
∂B
∂t

· da (12)

Because we assume that Faraday’s Law must be true
for every surface, it states that both of the vector in-
tegrals of equation 12 must be equal.5 This transforms
equation 12 into the Maxwell-Faraday equation in differ-
ential form (equation 13).

∇×E = −∂B
∂t

(13)

The differential form of Faraday’s law is one of Maxwell’s
equations which is why the equation is commonly re-
ferred to as the Maxwell-Faraday equation. The
principal of the equation can be used as a basis for de-
veloping electric generators, inductors, and transformers.

Looking at Ampere’s Law, it typically relates a mag-
netic field integrated around a closed loop to the electric
current passing through the loop. If the electric field is
constant throughout time, then Ampere’s law relates the
magnetic field (B) to its source, the current density (J)
as shown in equation 14.

∮
B · dl = µ0

∫
J · da (14)

where B is the magnetic field, dl is a vector element that
is part of the surface boundary, µ0 is the permeability of
free space, and J · da is the total current passing through
the 2 dimensional surface. This equation can be further
reduced to

∮
B · dl = µ0Ienc (15)

where Ienc is the current enclosed by the surface bound-
ary. This is Ampere’s Law in integral form. To transform
equation 15 into differential form, apply Stokes’ Theorem
to the left hand side of equation 15 and integrate with
respect to time under the integral as shown for Maxwell-
Faraday’s equation. Doing so will result in equation 16.

∇×B = µ0J (16)

Ampere’s Law is useful for calculating the magnetic fields
in highly symmetric cases when the magnitude of B can
be taken out of the integral due to the fact that the mag-
nitude of B is constant along the boundary. Some ex-
amples are calculating the magnetic field inside a long
solenoid, inside a conductor, or from a long straight wire.

V. CONCLUSION

Although Sir George Gabriel Stokes did not invent
Stokes’ Theorem, it was named after him for his habit of
putting the theorem on his tests at Cambridge Univer-
sity. When George Green entered Cambridge at the age
of 40 to complete his undergraduate degree he brought
with him his essay on electricity and magnetism which
contained the original theorem that we know as Stokes’s
Theorem. Only four years after graduating, Green died
leaving behind his essay at Cambridge where William
Thompson discovered it and used it as a basis for fur-
ther advancements in math and science. Stokes’ Theorem
states that the line integral around the boundary curve
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of S of the tangential component of F is equal to the sur-
face integral of the normal component of the curl of F.
Stokes’ Theorem can be applied to equations such as the
Maxwell-Faraday Law and Ampere’s Law to transition
between the differential form and the integral form of
the equation. Transitioning to the integral form of Am-
pere’s Law allows for the calculation of the magnetic field

inside solenoids, conductors, or from a long straight wire.
The integral form of Maxwell-Faraday’s Law allows for
the calculation of an electric field from a changing mag-
netic field which is the basis for generators, inductors,
and conductors. Thanks to the early works of Green and
Thompson, Stokes’ Theorem has contributed a great deal
to the furthering of math and science.
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