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Bessel functions are a series of solutions to a second order differential equation that arise in
many diverse situations. This paper derives the Bessel functions through use of a series solution
to a differential equation, develops the different kinds of Bessel functions, and explores the topic
of zeroes. Finally, Bessel functions are found to be the solution to the Schroedinger equation in a
situation with cylindrical symmetry.

INTRODUCTION

While special types of what would later be known as
Bessel functions were studied by Euler, Lagrange, and
the Bernoullis, the Bessel functions were first used by F.
W. Bessel to describe three body motion, with the Bessel
functions appearing in the series expansion on planetary
perturbation [1]. This paper presents the Bessel func-
tions as arising from the solution of a differential equa-
tion; an equation which appears frequently in applica-
tions and solutions to physical situations [2] [3]. Fre-
quently, the key to solving such problems is to recognize
the form of this equation, thus allowing employment of
the Bessel functions as solutions. The subject of Bessel
Functions and applications is a very rich subject; never-
theless, due to space and time restrictions and in the in-
terest of studying applications, the Bessel function shall
be presented as a series solution to a second order dif-
ferential equation, and then applied to a situation with
cylindrical symmetry. Appropriate development of ze-
roes, modified Bessel functions, and the application of
boundary conditions will be briefly discussed.

THE BESSEL EQUATION

Bessel’s equation is a second order differential equation
of the form

x2y′′ + xy′ + (x2 − ν2)y = 0 (1)

By re-writing this equation as:

x(xy′)′ + (x2 − ν2)y = 0 (2)

and employing the use of a generalized power series, we
re-write the terms of (2) in terms of the series:

y =
∞∑
n=0

anx
n+s

y′ =
∞∑
n=0

an(n+ s)xn+s−1

xy′ =
∞∑
n=0

an(n+ s)xn+s

(xy′)′ =
∞∑
n=0

an(n+ s)2xn+s−1

(xy′)′ =
∞∑
n=0

an(n+ s)2xn+s

When the coefficients of the powers of x are organized, we
find that the coefficient on xs gives the indicial equation
s2 − ν2 = 0,=⇒ s = ±ν, and we develop the general
formula for the coefficient on the xs+n term:

an = − an−2

(n+ s)2 − ν2
(3)

In the case s = ν:

an = − an−2

n(n+ 2ν)
(4)

and since a1 = 0, an = 0 for all n = odd integers. Coeffi-
cients for even powers of n are found:

a2n = − a2n−2

22n(n+ ν)
(5)

Recalling that for the gamma function:

Γ(ν + 2) = (ν + 1)Γ(ν + 1),
Γ(ν + 3) = (ν + 2)Γ(ν + 2) = (ν + 2)(ν + 1)Γ(ν + 1),

we can write the coefficients:

a2 = − a0

22(1 + ν)
= − Γ(1 + ν)

22Γ(2 + ν)

a2n = − a0Γ(1 + ν)
n!22nΓ(n+ 1 + ν)

Which allows us to write the terms of the series :

y = Jν(x) =
∞∑
n=0

(−1)n

Γ(n+ 1)Γ(n+ ν + 1)

(x
2

)2n+ν

(6)

Where Jν(x) is the Bessel function of the first kind, order
ν. The first five Bessel functions of this kind are shown
in figure 1.
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FIG. 1: The Bessel Functions of orders ν = 0 to ν = 5

DIFFERENT ORDERS OF BESSEL FUNCTIONS

In the preceding section, the form of Bessel functions
were obtained are known as ”Bessel functions of the first
kind.”[3]. Different kinds of Bessel functions are obtained
with negative values of ν, or with complex arguments.
This section briefly explores these different kinds of func-
tions

Neumann Functions

Bessel functions of the second kind are known as Neu-
mann functions, and are developed as a linear combina-
tion of Bessel functions of the first order described:

Nν(x) =
cosνπJν(x)− J−ν(x)

sinνπ
(7)

For integral values of ν, the expression of Nν(x) has an
indeterminate form, and Nν(x)|x=0 = ±∞. Nevertheless
the limit of this function for x 6= 0, the expression for Nν
is valid for any value of ν, allowing the general solution
to Bessel’s equation to be written:

y = AJν(x) +BNν(x) (8)

with A and B as arbitrary constants determined from
boundary conditions.

Bessel functions of the first and second kind are the
most commonly found forms of the Bessel function in ap-
plications. Many applications in hydrodynamics, elastic-
ity, and oscillatory systems have solutions that are based
on the Bessel functions. One such example is that of a
uniform density chain fixed at one end undergoing small
oscillations. The differential equation of this situation is:

d2u

dz2
+

1
z

du

dz
+
k2u

z
= 0 (9)

where z references a point on the chain, k2 = p2

g , with p
as the frequency of small oscillations at that point, and

g the gravitational constant of acceleration. Eq. (9) is a
form of eq. (1), and solution is:

u = AJ0(2kz
1
2 ) +BY0(2kz

1
2 ), (10)

where the A and B are determined by the boundary con-
ditions.

Modified Bessel Functions

Modified Bessel functions are found as solutions to the
modified Bessel equation

x2y′′ + xy′ − (x2 − ν2)y = 0 (11)

which transforms into eq. (1) when x is replaced with
ix. However, this leaves the general solution of eq. (1)
a complex function of x. To avoid dealing with complex
solutions in practical applications [2], the solutions to
(11) are expressed in the form:

Iν(x) = e
νπi
2 Jν(xe

iπ
2 ) (12)

The Iν(x) are a set of functions known as the modified
Bessel functions of the first kind. The general solution of
the modified Bessel function is expressed as a combina-
tion of Iν(x) and a function I−ν(x):

y = AI−ν(x)−BIν(x) (13)

where again A and B are determined from the boundary
conditions.

A solution for non-integer orders of ν is found:

Kν(x) =
π

2
I−ν(x)− Iν(x)

sinνπ
(14)

The functions Kν(x) are known as modified Bessel func-
tions of the second kind. A plot of the Neumann Func-
tions (Nν(x)) and Modified Bessel functions (Iν(x))is
shown in figure (2). A plot of the Modified Second Kind
functions (Kn(x)) is shown in fig. (3).

Modified Bessel functions appear less frequently in ap-
plications, but can be found in transmission line studies,
non-uniform beams, and the statistical treatment of a
relativistic gas in statistical mechanics.

Zeroes of Bessel Functions

The zeroes of Bessel functions are of great importance
in applications [5]. The zeroes, or roots, of the Bessel
functions are the values of x where value of the Bessel
function goes to zero (Jν(x) = 0). Frequently, the ze-
roes are found in tabulated formats, as they must the be
numerically evaluated [5]. Bessel function’s of the first



3

FIG. 2: The Neumann Functions (black) and the Modified
Bessel Functions (blue) for integer orders ν = 0 to ν = 5

FIG. 3: The Modified Bessel Functions of the second kind for
orders ν = 0 to ν = 5 [4]

and second kind have an infinite number of zeros as the
value of x goes to ∞. The zeroes of the functions can be
seen in the crossing points of the graphs in figure ( 1),
and figure ( 2). The modified Bessel functions of the first
kind (Iν(x)) have only one zero at the point x = 0, and
the modified Bessel equations of the second kind (Kν(x))
functions do not have zeroes.

Bessel function zeros are exploited in frequency modu-
lated (FM) radio transmission. FM transmission is math-
ematically represented by a harmonic distribution of a
sine wave carrier modulated by a sine wave signal which
can be represented with Bessel Functions. The carrier
or sideband frequencies disappear when the modulation
index (the peak frequency deviation divided by the mod-
ulation frequency) is equal to the zero crossing of the
function for the nth sideband.

APPLICATION - SOLUTION TO
SCHROEDINGER’S EQUATION IN A

CYLINDRICAL WELL

Consider a particle of mass m placed into a two-
dimensional potential well, where the potential is zero
inside of the radius of the disk, infinite outside of the
radius of the disk. In polar coordinates using r, φ as
representatives of the system, the Laplacian is written:

∇2Ψ =
1
r

∂

∂r

(
r
∂Ψ
∂r

)
+

1
r2

∂2Ψ
∂φ2

. (15)

Which in the Schroedinger equation presents:

− h̄2

2m

[
1
r

∂

∂r

(
r
∂Ψ
∂r

)
+

1
r2

∂2Ψ
∂φ2

]
= EΨ. (16)

Using the method of separation of variables with a pro-
posed solution Ψ = R(r)T (φ) in (16), produces

− h̄2

2m

[
T (φ)

1
R(r)

∂

∂r

(
r
∂R(r)
∂r

)
+

1
r2
R(r)

∂2T

∂φ2

]
= ER(r)T (φ)

(17)
and then dividing by Ψ:[

1
R

1
r

∂

∂r

(
r
∂R

∂r

)
+

1
r2

1
T

∂2T

∂φ2

]
=
−2mE
h̄2 (18)

setting 2mE
h̄2 = k2 and multiplying through by r2 pro-

duces

r

R

d

dr

(
r
dR

dr

)
+ k2r2 +

1
T

d2T

dφ2
= 0 (19)

which is fully separated in r and φ. To solve, the φ
dependent portion is set to −m2, yielding the harmonic
oscillator equation in T (φ), which presents the solution:

T (φ) = Aeimφ (20)

Where A is a constant determined via proper normaliza-
tion in φ:

∫ 2π

0

A2T (φ)T (φ) dφ = 1 =⇒ A =

√
1

2π
(21)

Leaving the φ dependent portion T (φ) =
√

1
2π e

imφ

Working now with the r dependent portion of the sep-
arated equation, multiplying the r dependent portion of
(19) by r2, and setting equal to m2 one obtains:

r2

R

d2R

dr2
+
r

R

dR

dr
+ k2r2 = m2 (22)
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which when rearranged:

r2 d
2R

dr2
+ r

dR

dr
+ (k2r2 −m2) = 0 (23)

which is of the same form as eq. (1), Bessel’s differential
equation. The general solution to eq. (23) is of the form
of eq. (8), and we write that general solution:

R(r) = AJm(kr) +BNm(kr), (24)

where Jm(kr) and Nm(kr) are respectively the Bessel
and Neumann functions of order m, and A and B are
constants to be determined via application of the bound-
ary conditions. As the solution must be finite at x = 0,
and as Nm(kr)→∞ as x→ 0, this means that the coef-
ficient of Nm(kr) = B = 0, leaving R(r) to be expressed:

R(r) = AJm(kr) (25)

Using the boundary condition that Ψ = 0 at the radius of
the disk, we have the condition that Jm(krb) = 0, which
implicitly requires the argument of Jm to be a zero of the
Bessel function. As noted earlier, these zeroes must be
calculated individually in numerical fashion. Requiring
that krb = αm,n, which is the nth zero of the mth or-
der Bessel function[6], the energy of the system is solved

by expressing k in terms of αm,n in (eq. k =
√

2mE
h̄2 ),

arriving at:

Em,n =
α2
m,nh̄

2

2mr2
b

h (26)

The full solution for Ψ is thus:

Ψm(r, φ) = AJm(
αm,nr

rb
)eimφ (27)

Because the Bessel function zeroes cannot be determined
apriori, it is difficult to find a closed solution to express
the normalization constant A. We select an order for m
to continue with the determination of the normalization
constant, and arbitrarily choose m = 2, which has a zero
at r = 5.13562, which we will set to be the radius of the
circle. Given the preceding, the normalization can be for
the m = 2, n = 1 case can be found:∫ rboundary

0

A2J2(
α2,1r

rb
)J2(

α2,1r

rb
) dr = 1 (28)

which for rboundary = 5.13562 =⇒ A =
√

1
0.510377 , (nu-

merical values obtained using numerical integration in

Mathematica). Thus, we can express the full solution for
the m = 2 scenario:

Ψ(r, φ) =

√
1

0.510377

√
1

2π
J2(

α2,1r

rb
)eimφ (29)

And since we’ve effectively set αm,n = rb,

Ψ(r, φ) =

√
1

0.510377

√
1

2π
J2(r)eimφ (30)

Admittedly, this solution is somewhat contrived, but it
shows the importance of working with the zeroes of the
Bessel function to generate the particular solution using
the boundary conditions.

CONCLUSION

The Bessel functions appear in many diverse scenar-
ios, particularly situations involving cylindrical symme-
try. The most difficult aspect of working with the Bessel
function is first determining that they can be applied
through reduction of the system equation to Bessel’s dif-
ferential or modified equation, and then manipulating
boundary conditions with appropriate application of ze-
roes, and the coefficient values on the argument of the
Bessel function. This topic can be greatly expanded
upon, and the reader is highly encouraged to review the
applications and development presented in [2].
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