
Stability Study of Buck Converter Using Eigenvalue theory

Shengnan Li∗
Power Electronics Laboratory

Department of Electrical Engineering and Computer science
the University of Tennessee, Knoxville, TN 37919 USA

(Dated:)

This paper introduces the eigenvalue theory and the application to linear dynamic systems to
determine the stability of the system. This theory is used to analyze the stability of a buck converter.

INTRODUCTION

The general technique for the analysis and synthesis of
linear systems is much more often used than that of non-
linear systems, the reasons for the predominance of linear
method are, first, the general solutions for linear equa-
tions are more simply obtained than general solutions for
a nonlinear equations; and second, many nonlinear equa-
tions can be adequately approximated by linear systems
or linearize at an equilibrium point.

A linear dynamic system can be represented by an nth
order differential equation. The nth order differential
equation can be converted into a set of n first order differ-
ential equations expressed in terms of the state variables.
For example, a circuit with two dynamic components: a
capacitor C and an inductor L, and a resistor R. they
connect in series. Take the current of the inductor and
the voltage of the capacitor as the state variables, this
dynamic system can be represented as





diL
dt

= − 1
L

(vc + iLR)

dvC

dt
=

iL
C

(1)

Based on the linear system theory, several methods are
proposed to determine the stability of a dynamic system.
In frequency domain, which is the Laplace transforma-
tion of differential equations, Routh criteria, Nyquist’s
criteria are used.[1] In time domain, stability can be stud-
ies based on the solutions of the differential equations.
Specifically, the Jacobian matrix of the state equations
is used to determine the convergence of the solution,
hence the stability of the system described by the state
equations.[2]

Now we come to a specific series of dynamic systems,
power electronics systems. Power electronics is the appli-
cation of solid-state electronics for the control and con-
version of electric power. Power electronic converters can
be found wherever there is a need to modify the electrical
energy form.[3] For example, the power supply for CPU
of a computer is 5 volts DC, however, the power source
which is accessible is 110V AC. Several power converters
are needed to get the desired voltage. First, an AC-DC
converter is required to convert the AC voltage to DC
voltage, this converter is composed of a power electronics

rectifier and a capacitor. Also feedback control is needed
to keep the output voltage as a constant. Then, a step
down converter is used to convert the 110V DC voltage to
48V DC voltage. Usually a Buck converter is used in the
power stage and a controller is required to regulate the
output voltage.[3] Finally, another step down converter
is used to further decrease the voltage to 5 Volts.

In this paper, the stability for linear ordinary differ-
ential equations is firstly studied, then the mathematica
background of eigenvalue theory is introduced. Then the
stability of a Buck converter with a feedback controller
is studied using the previously introduced theories.

MATHEMATICAL BACKGROUND REVIEW

Eigenvalue theory

Definition[2]:
(1)if F is a field and n is an positive integer, then c∈F

is an eigenvalue of a matrix A∈M n×n(F ), if and only if
|λI−A| = 0.

(2)A vector v ∈ Fn 6=




0
...
0


 is an eigenvector of A

associated with λ, if and only if Av = λv. Eigenvectors
which associated with distinct eigenvalues are linearly
independent.

Example:A =
(

a b
c d

)
,

then det(A− λI) = det(
(

a− λ b
c d− λ

)
) = 0

⇒ (a− λ)(d− λ)− bc = 0
⇒ λ2 − (a + d)λ + ad− bc = 0
where (a+d) = trace(A) = T , (ad−bc) = det(A) = D,

then the character equation can be rewrite as
λ2 − Tλ + D = 0.
solve the equation we get
λ1 = T−√T 2−4D

2 , λ2 = T+
√

T 2−4D
2 .

1) If T 2 − 4D > 0, both eigenvalues are real and dis-
tinct;

2) If T 2 − 4D = 0, λ1 = λ2;
3) If T 2 − 4D > 0, both eigenvalues are complex num-

bers, λ1 = λ∗2.
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Substitute λi into (λiI−A)vi = 0, vi is the eigenvector
associated with λi.

Proposition[2]:
If det(A) 6= 0, then A is diagonalizable. If eigenvalues

of A are all real numbers, then A = pΛP−1, where Λ
is a diagonal matrix composed of the eigenvalues of A,

Λ =




λ1 0 0 0
0 λ2 0 0

0 0
. . . 0

0 0 0 λn


, n is the order of A. P is the

matrix composed of eigenvectors.
Prove:
P−1AP

= P−1A(v1, v2, . . . , v(n))
= P−1(Av1, Av2, . . . , Av(n))
= P−1(λ1v1, λ2v2, . . . , λnv(n))
= P−1ΛP

= P−1(




λ1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 +




0 0 0 0
0 λ2 0 0
0 0 0 0
0 0 0 0


 + · · · +




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 λn


)P

= P−1




λ1 0 0 0
0 0 0 0

0 0
. . . 0

0 0 0 0


 P +P−1




0 0 0 0
0 λ2 0 0

0 0
. . . 0

0 0 0 0


 P +

· · · + P−1




0 0 0 0
0 0 0 0

0 0
. . . 0

0 0 0 λn


 P =




λ1 0 0 0
0 0 0 0

0 0
. . . 0

0 0 0 0


 +




0 0 0 0
0 λ2 0 0

0 0
. . . 0

0 0 0 0


 + · · ·+




0 0 0 0
0 0 0 0

0 0
. . . 0

0 0 0 λn


 = Λ

therefore, PP ( − 1)APP ( − 1) = PΛP ( − 1)

Stability of linear dynamic system

In this section we discuss the notion of stability. A
fixed point is stable if the dynamical system can be forced
to remain in any neighborhood of the fixed point by
choice of initial data sufficiently close to that fixed point.
It is asymptotically stable if, in addition, successive iter-
ates starting near the fixed point approach it as n→ ∞.
[4]

Example Consider the map Un+1 = aUn and the fixed
point Ū = 0. If |a| ≤ 1 then the fixed point is stable: just
choose δ = ε and then, since |Un+1| = |aUn| ≤ |Un| we
have |Un| ≤ |U0| = ε for all n ≥ 0. If |a| < 1 then the

fixed point is asymptotically stable since Un = anU0 and
hence Un → 0 as n →∞.

Now let’s consider the stability of a linear dynamic
system. The linear dynamic system can be presented as
a group of ordinary differential equation Eq. 2

u̇(t) = Au(t) (2)

The solution of Eq. 2 is simply

u(t) = eAtu(0).

[4]
Let A have eigenvalues λii = 1 . . . n where n is

the order of A. A can be rewrite as A = P
∧

P−1,

where
∧

=




λ1 0 0 0
0 λ2 0 0

0 0
. . . 0

0 0 0 λn


 P is the matrix of

eigenvectors. eAt can be rewrite as PeJtP−1. eJt =


eλ1t 0 0 0
0 eλ2t 0 0

0 0
. . . 0

0 0 0 eλnt




If and only if Re(λi) < 0 for all i, then eλi < 1, when
t →∞, eλit → 0, then eJt → 0, and eAt = PeJtP−1 → 0,
there for u(t) → 0, according to the definition of stability,
u(t) is stable at 0.

For any other linear dynamic system with forcing in-
put, which the ODE is not homogeneous u̇(t) = Au(t) +
C, however, the stability of the solution is the same as
u̇(t) = Au(t).

There for we can conclude that the linear dynamic sys-
tem is stable if and only if the coefficient matrix of the
correspond ODE has Re(λi)<0 for all i.

BUCK CONVERTER STABILITY ANALYSIS

Buck converter and the control circuit are shown in
Figure 1. The operation principle can be illustrated using
the equivalent circuits in Figure 2.

When the switch S2 is closed, the equivalent circuit is
as the left one in Figure 2. Call this State A. Take the
inductor current iL2 , output voltage v0 and the control
voltage vconin control block as state variables, we can
write the state equation during this time period.[5]

State A:




diL2

dt
= − v0

L2
+

E

L2

dvo

dt
=

iL2

C2
− v0

τ
dvcon

dt
= −K

iL2

C2
+ (

1
τ
− 1

τF
)Kv0 + K

Vref

τF
(1 +

R1

R2
)

(3)
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FIG. 1: Buck converter diagram.

FIG. 2: Equivalent circuit.

Where τ =
√

RC2, τF =
√

RF CF ,K is called propor-
tional coefficient, K = RF

R1
.

When the switch is off, according to the equivalent
circuit in the right one of Figure 2, we can get the state
equations:

State B:





diL2

dt
= − v0

L2

dv0

dt
=

iL2

C2
− v0

τ
dvcon

dt
= −K

iL2

C2
+ (

1
τ
− 1

τF
)Kv0 + K

Vref

τF
(1 +

R1

R2
)

(4)
where d is duty ratio, which is Ton

Toff
. In order to In steady

state, the duty ratio d is a constant. It can be expressed
as D = Vcon−VL

VH−VL
, where VH and VL are the high and low

boundary value of the triangular wave Vcamp. Then the
state equations can be averaged in one period.

TABLE I: Parameters in the circuit

parameters values

E 60V

L2 3mH

C2 47µF

R 10Ω

Vref 1.5V

RF , CF 1.2kΩ, 220nF

T 50µs

VH , VL 8V,3V

FIG. 3: System Stable.

averaged equation:




diL2

dt
= − v0

L2
+ D

E

L2

dvo

dt
=

iL2

C2
− v0

τ

dvcon

dt
= −K

iL2

C2
+ (

1
τ
− 1

τF
)Kv0 + K

Vref

τF
(1 +

R1

R2
).

(5)
In steady state, the derivative of the state variables

should be zero, therefore set the right hand side of Eq. 5
to be zero, we can get the equilibrium point Yo:

Yo =




IL2

Vo

Vcon


 =




DE
R

DE
VL + D(VH − VL)


 . (6)

The coefficient matrix is

J(Yo) =




0 − 1
L2

E
L(VH−VL)

1
C2

1
τ 0

− K
C2

K( 1
τ − 1

τF
) 0


 . (7)

Then we use the calculated coefficient matrix to tell the
stability of this buck converter. The parameters used in
the circuit is listed in Table I. These parameters are de-
cided according to the application of the circuit, while
the proportional coefficient K is the one we should de-
sign, because it can affect the stability of the circuit. Now
we calculate the eigenvalue of the Jacobian matrix Eq. 7
as K varies.

According to Table II we can see that when K is rela-
tively small, all three real parts of the eigenvalues of Ja-
cobian matrix are negative, therefore the circuit is stable.
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TABLE II: Eigenvalue of coefficient matrix under different K

K Eigenvalues stability

0.014 −39.0± 3079.3i, -985.8 stable

0.015 −15.8± 3115.1i,−1032.2 stable

0.0156 −4.6± 3132.9i,−1054.6 stable

0.0155 −2.4± 3136.5i,−1059.0 stable

0.0157 −2± 3140.0i,−1063.4 stable

0.0156 6.3± 3150.6i,−1076.4 unstable

FIG. 4: System Unstable.

As K increase, the real part value also increase, when K
increases to 0.0156, the real parts become positive, then
the circuit loses stability. Figure 3 shows the simulation
result of the voltage and current when the system is sta-
ble, Figure 4 shows the voltage and current when the
system is unstable.

SUMMARY

This paper uses the eigenvalue theory to evaluate the
stability of a linear dynamic system. Firstly, introduce
some definition of eigenvalue theory; then use the theory
to determine the stability of ordinary partial differential
equations, which were used to describe linear dynamic
system. Finally, use this theory in a buck converter to
determine the stability.
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