Midterm Exam

September 27, 2011

SHOW ALL WORK TO GET FULL CREDIT!

PART I:ONLY TWO OF THE FOUR PROBLEMS WILL BE GRADED. Take a look at the 4 problems. Each of them is worth 25 points. To make sure that you have enough time to do your work you will have to turn in only 2 of the 4 problems. If you turn more than 2 problems only the two on top will be graded and 5 points will be deducted from your grade.
PART II: Take the test home and bring ALL the problems solved on Tuesday October 4. Your grade for the test will be the sum of the two parts. A perfect score is worth 150 points.

Problem 1: The density of charge $\rho(\mathbf{x})$ is defined in such a way that

$$
\int_{V} \rho(\mathbf{x}) d^{3} x=q
$$

where q is the total amount of charge inside the volume V.
Consider that a charge q is located at the point $(x, y, z)=(\sqrt{3},-1,2)$; consider that this is all the charge you have inside the volume V and consider that V is all the space, i.e., $-\infty \leq x_{i} \leq \infty$ in cartesian coordinates.
a) Provide an expression for $\rho(\mathbf{x})$ in cartesian coordinates. (7 points)
b) Provide an expression for $\rho(\mathbf{x})$ in spherical coordinates. (9 points)
c) Provide an expression for $\rho(\mathbf{x})$ in cylindrical coordinates.(9 points)

Problem 2: Consider the scalar field $\phi(x, y, z)=x^{2}-y z$.
a) Find $\nabla \phi$ and evaluate it at the point $P=(3,-2,1) \cdot(6$ points $)$
b) Find a unit vector normal to the surface $\phi=11$ at $P .(6$ points $)$
c) Find a unit vector normal to the surface $\phi=11$ at $P^{\prime}=(3,-1,2) \cdot(6$ points $)$
d) Calculate the angle between the vectors found in (b) and (c).(7 points)

Problem 3: An hexagonal Bravais lattice (in two dimensions) can be expanded by the lattice vectors:

$$
\mathbf{a}_{1}=a(1,0)
$$

and

$$
\mathbf{a}_{2}=a\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right),
$$

where a is the lattice spacing. The vectors \mathbf{a}_{i} are expressed in terms of their components $\left(x_{1}, x_{2}\right)$ in the cartesian frame of reference S. We are going to define a frame of reference S^{\prime} with oblique axis. The axis x_{1}^{\prime} is parallel to the vector \mathbf{a}_{1} and the axis x_{2}^{\prime} is parallel to the vector \mathbf{a}_{2}.
a) What is the value of the angle α formed by the axis x_{1}^{\prime} and x_{2}^{\prime} ? (4 points)
b) Consider a vector

$$
\mathbf{r}=a\left(\frac{5}{2}, \frac{\sqrt{3}}{2}\right)
$$

in S. Write \mathbf{r} in terms of \mathbf{a}_{1} and \mathbf{a}_{2}. (4 points)
c) Find r, the length of \mathbf{r}, in frame S . (4 points)
d) Write $r^{\prime i}$, i.e., the contravariant components of vector \mathbf{r} in S^{\prime} in terms of the cartesian components, i.e. provide $x^{\prime i}=x^{\prime i}\left(x_{1}, x_{2}\right)$. (4 points)
e) Write r_{i}^{\prime}, i.e., the covariant components of vector \mathbf{r} in S^{\prime}, i.e. provide $x_{i}^{\prime}=x_{i}^{\prime}\left(x_{1}, x_{2}\right)$. (4 points)
f) Find r^{\prime}, the length of \mathbf{r}, in system S^{\prime}. Compare with your result in part (c) and comment.(5 points)

Problem 4:

Consider the tensor $\mathrm{G}^{\alpha \rho}$, where α and ρ take the values $0,1,2$, and 3 with $x_{0}=c t$ (c is a constant), $x_{1}=x, x_{2}=y$, and $x_{3}=z$ in frame of reference S . In this frame

$$
\mathrm{G}^{\alpha \rho}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \tag{1}\\
0 & 0 & -H_{z} & H_{y} \\
0 & H_{z} & 0 & -H_{x} \\
0 & -H_{y} & H_{x} & 0
\end{array}\right)
$$

a) What is the rank of the tensor $\mathrm{G}^{\alpha \rho}$? Is $\mathrm{G}^{\alpha \rho}$ symmetric, antisymmetric or neither? (2.5 points)
b) Express $\mathrm{G}^{\alpha \rho}$ in system S^{\prime} characterized by the variables $x_{0}^{\prime}=c t^{\prime}, x_{1}^{\prime}=x^{\prime}, x_{2}^{\prime}=y^{\prime}$, and $x_{3}^{\prime}=z^{\prime}$ knowing that the transformation matrix $M^{\mu}{ }_{\nu}=\frac{\partial x^{\prime \mu}}{\partial x^{\nu}}$ is given by

$$
M_{\nu}^{\mu}=\left(\begin{array}{cccc}
\gamma & -\beta \gamma & 0 & 0 \tag{2}\\
-\beta \gamma & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right),
$$

where $\beta=v / c$ and $\gamma=\frac{1}{\sqrt{1-\beta^{2}}}$ where v and c are constants. Express the components of $G^{\prime \lambda, \delta}$ in terms of γ, β and the components of $G^{\alpha, \rho}$ given by Eq.(1). (5 points)
c) Find $\left(M^{-1}\right)^{\mu}{ }_{\nu}$, i.e., the inverse of $M^{\mu}{ }_{\nu}$. (5 points)
d) Give a formal expression for the matrix elements of $\left(M^{-1}\right)^{\mu}{ }_{\nu}$ in terms of partial derivatives of the coordinates in S and S^{\prime},i.e., the equivalent of the expression that I gave for $M^{\mu}{ }_{\nu}$ in part (b).(5 points)
e) Now consider the tensor

$$
\mathrm{G}^{\alpha}{ }_{\rho}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \tag{3}\\
0 & 0 & -H_{z} & H_{y} \\
0 & H_{z} & 0 & -H_{x} \\
0 & -H_{y} & H_{x} & 0
\end{array}\right) .
$$

What is the rank of $\mathrm{G}^{\alpha}{ }_{\rho}$? Is it a covariant, contravariant or mixed tensor? (2.5 points)
f) Provide an expression for $\mathrm{G}^{\alpha}{ }_{\rho}$ in S^{\prime}. Express the components of $G^{\prime \lambda} \delta$ in terms of γ, β and the components of $G^{\alpha}{ }_{\rho}$ given by Eq.(3). (5 points)

