Midterm Exam

P571

September 27, 2011

SOLUTION:

Problem 1: We know that the charge q is at $\mathbf{r}_{0}=\left(x_{0}, y_{0}, z_{0}\right)=(\sqrt{3},-1,2)$.
a) In cartesian coordinates

$$
\rho(\mathbf{x})=q \delta(x-\sqrt{3}) \delta(y+1) \delta(z-2)
$$

since with the above definition

$$
\int_{-\infty}^{\infty} d x \int_{-\infty}^{\infty} d y \int_{-\infty}^{\infty} d z \rho(\mathbf{x})=q
$$

b) In spherical coordinates all we need to do is to express the δ function obtained in part (a) in terms of spherical coordinates. Then

$$
\rho(\mathbf{x})=\frac{q}{r^{2} \sin \theta} \delta\left(r-r_{0}\right) \delta\left(\theta-\theta_{0}\right) \delta\left(\phi-\phi_{0}\right)
$$

where $r_{0}=\sqrt{x_{0}^{2}+y_{0}^{2}+z_{0}^{2}}=2 \sqrt{2}, \cos \theta_{0}=\frac{\sqrt{2}}{2}$ then $\theta_{0}=\pi / 4$, and $\tan \phi_{0}=-1 / \sqrt{3}$ then $\phi_{0}=11 \pi / 6$. Then

$$
\rho(\mathbf{x})=\frac{q}{r^{2} \sin \theta} \delta(r-2 \sqrt{2}) \delta(\theta-\pi / 4) \delta(\phi-11 \pi / 6)
$$

since with the above definition

$$
\int_{-0}^{\infty} r^{2} d r \int_{0}^{\pi} \sin \theta d \theta \int_{0}^{2 \pi} d \phi \rho(\mathbf{x})=q
$$

c) In cylindrical coordinates all we need to do is to express the δ function obtained in part (a) in terms of cylindrical coordinates (ρ, ϕ, z). Then

$$
\rho(\mathbf{x})=\frac{q}{\rho} \delta\left(\rho-\rho_{0}\right) \delta\left(\phi-\phi_{0}\right) \delta\left(z-z_{0}\right)
$$

where $\rho_{0}=\sqrt{x_{0}^{2}+y_{0}^{2}}=2, \tan \phi_{0}=-1 / \sqrt{3}$ then $\phi_{0}=11 \pi / 6$ and $z_{0}=2$. Then

$$
\rho(\mathbf{x})=\frac{q}{\rho} \delta(\rho-2) \delta(\phi-11 \pi / 6) \delta(z-2)
$$

since with the above definition

$$
\int_{-0}^{\infty} \rho d \rho \int_{0}^{2 \pi} d \phi \int_{-\infty}^{\infty} d z \rho(\mathbf{x})=q
$$

Problem 2:

a)

$$
\left.\nabla \phi\right|_{P}=\left.(2 x,-z,-y)\right|_{P}=(6,-1,2)
$$

b) We see that $\left.\phi\right|_{P}=11$ then a unit normal vector to that surface at P will be given by

$$
\mathbf{V}=\frac{\left.\nabla \phi\right|_{P}}{|\nabla \phi|_{P} \mid}=\frac{(6,-1,2)}{\sqrt{41}}
$$

c) A unit vector perpendicular to the surface $\phi=11$ at $P^{\prime}=(3,-1,2)$ is given by

$$
\mathbf{V}^{\prime}=\frac{\left.\nabla \phi\right|_{P} ^{\prime}}{|\nabla \phi|_{P}^{\prime} \mid}=\frac{(6,-2,1)}{\sqrt{41}}
$$

d) The angle between the two vectors can be found from

$$
\mathbf{V} \cdot \mathbf{V}^{\prime}=V V^{\prime} \cos \theta=\cos \theta
$$

since the two vectors are normalized. Then,

$$
\cos \theta=\frac{36+2+2}{41}=\frac{40}{41} .
$$

Thus

$$
\theta=\cos ^{-1} \theta=12.68^{\circ}
$$

Problem 3:

a) Since the axis are parallel to the vectors \mathbf{a}_{i} we can obtain the angle α between the axis from

$$
\mathbf{a}_{1} \cdot \mathbf{a}_{2}=a_{1} a_{2} \cos \alpha
$$

Then

$$
\cos \alpha=\frac{\mathbf{a}_{1} \cdot \mathbf{a}_{2}}{a_{1} a_{2}}=\frac{a^{2}}{a^{2}} \frac{1}{2}=\frac{1}{2} .
$$

Then $\alpha=\pi / 3=60^{\circ}$.
b) We know that

$$
\mathbf{r}=a\left(\frac{5}{2}, \frac{\sqrt{3}}{2}\right)=\alpha \mathbf{a}_{1}+\beta \mathbf{a}_{2}=\alpha a(1,0)+\beta a\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) .
$$

Then, comparing the x and the y components on both sides of the equation we can solve for α and β. We obtain $\alpha=2$ and $\beta=1$ then

$$
\mathbf{r}=2 \mathbf{a}_{1}+\mathbf{a}_{2}
$$

c) The length r of vector \mathbf{r} in frame S is given by

$$
r=\sqrt{\mathbf{r} \cdot \mathbf{r}}=\sqrt{a^{2} \frac{(25+3)}{4}}=\frac{a}{2} \sqrt{28}=a \sqrt{7}
$$

d) Since the contravariant components of \mathbf{r} in S^{\prime} are the components that arise from a projection parallel to the primed axis which are parallel to the \mathbf{a}_{i} vectors we know that the components are the coefficients α and β found in part (b) multiplied by a which is the length of the \mathbf{a}_{i} vectors. Then

$$
r^{\prime i}=(2 a, a)=a(2,1)
$$

e) The covariant components are given by the projection normal to the primed axis. Then,

$$
x_{1}^{\prime}=x^{1}=a \frac{5}{2}
$$

and

$$
x_{2}^{\prime}=x^{1} \cos \alpha+x^{2} \sin \alpha=a \frac{5}{2} \frac{1}{2}+a \frac{\sqrt{3}}{2} \frac{\sqrt{3}}{2}=a \frac{5}{4}+a \frac{3}{4}=2 a
$$

where we have used the value of α found in (a). Then

$$
r_{i}^{\prime}=\left(\frac{5}{2} a, 2 a\right)=a\left(\frac{5}{2}, 2\right) .
$$

f) The length r^{\prime} of vector \mathbf{r} in frame S^{\prime} is given by

$$
r^{\prime}=\sqrt{r_{i}^{\prime} r^{\prime i}}=\sqrt{\left(\frac{5}{2} a, 2 a\right) \cdot(2 a, a)}=\sqrt{5 a^{2}+2 a^{2}}=a \sqrt{7} .
$$

As expected we obtain the same result as in part (c) because the length of the vector is an scalar and, thus, invariant under a change of reference frame.

Problem 4:

a) The rank of $G^{\alpha \rho}$ is $2 . G^{\alpha \rho}$ is an antisymmetric tensor because $G^{\alpha \rho}=-G^{\rho \alpha}$.
b) We know that since $G^{\alpha \rho}$ is a contravariant tensor

$$
\begin{equation*}
G^{\prime \lambda \delta}=\frac{\partial x^{\prime \lambda}}{\partial x^{\alpha}} \frac{\partial x^{\prime \delta}}{\partial x^{\rho}} G^{\alpha \rho}=M_{\alpha}^{\lambda} M_{\rho}^{\delta} G^{\alpha \rho} . \tag{1}
\end{equation*}
$$

Notice that the only non-zero components of $G^{\alpha \rho}$ are $G^{12}, G^{13}, G^{21}, G^{23}, G^{31}$, and G^{32}. Then the only terms that are non-zero in Eq.(1) are:

$$
\begin{align*}
& G^{\prime \lambda \delta}=M^{\lambda}{ }_{1} M^{\delta}{ }_{2} G^{12} . \tag{2}\\
& G^{\prime \lambda \delta}=M^{\lambda}{ }_{1} M^{\delta}{ }_{3} G^{13} . \tag{3}\\
& G^{\prime \lambda \delta}=M^{\lambda}{ }_{2} M^{\delta}{ }_{1} G^{21} . \tag{4}\\
& G^{\prime \lambda \delta}=M^{\lambda}{ }_{2} M^{\delta}{ }_{3} G^{23} . \tag{5}\\
& G^{\prime \lambda \delta}=M^{\lambda}{ }_{3} M^{\delta}{ }_{1} G^{31} . \tag{6}\\
& G^{\prime \lambda \delta}=M^{\lambda}{ }_{3} M^{\delta}{ }_{2} G^{32} . \tag{7}
\end{align*}
$$

The non-zero components of $M^{\mu}{ }_{\nu}$ are $M^{0}{ }_{0}, M^{0}{ }_{1}, M^{1}{ }_{0}, M^{1}{ }_{1}, M^{2}{ }_{2}$, and $M^{3}{ }_{3}$. Then index λ can take two possible values in Eqs.(2) and (3) and only one value in Eqs.(4), (5), (6), and (7) while index δ can take two possible values in Eqs.(4) and (6) and only one value in Eqs.(2), (3), (5), and (7). Then the non-zero values of $G^{\prime \lambda \delta}$ are:

$$
\begin{gathered}
G^{\prime 02}=M^{0}{ }_{1} M_{2}^{2} G^{12}=-\beta \gamma G^{12}=\beta \gamma H_{z} \\
G^{\prime 12}=M^{1}{ }_{1} M^{2}{ }_{2} G^{12}=\gamma G^{12}=-\gamma H_{z} \\
G^{\prime 03}=M^{0}{ }_{1} M^{3}{ }_{3} G^{13}=-\beta \gamma G^{13}=-\beta \gamma H_{y} . \\
G^{\prime 13}=M^{1}{ }_{1} M_{3}^{3} G^{13}=\gamma G^{13}=\gamma H_{y} . \\
G^{\prime 20}=M_{2}^{2} M_{1}^{0} G^{21}=-\beta \gamma G^{21}=-\beta \gamma H_{z} .
\end{gathered}
$$

$$
\begin{gathered}
G^{\prime 21}=M_{2}^{2} M_{1}^{1} G^{21}=\gamma G^{21}=\gamma H_{z} \\
G^{\prime 23}=M_{2}^{2} M_{3}^{3} G^{23}=G^{23}=-H_{x} \\
G^{\prime 30}=M_{3}^{3} M_{1}^{0} G^{31}=-\beta \gamma G^{31}=\beta \gamma H_{y} . \\
G^{\prime 31}=M_{3}^{3} M^{1}{ }_{1} G^{31}=\gamma G^{31}=-\gamma H_{y} \\
G^{\prime 32}=M_{3}^{3} M_{2}^{2} G^{32}=G^{32}=H_{x} .
\end{gathered}
$$

Then

$$
G^{\prime \alpha \rho}=\left(\begin{array}{cccc}
0 & 0 & \beta \gamma H_{z} & -\beta \gamma H_{y} \\
0 & 0 & -\gamma H_{z} & \gamma H_{y} \\
-\beta \gamma H_{z} & \gamma H_{z} & 0 & -H_{x} \\
\beta \gamma H_{y} & -\gamma H_{y} & H_{x} & 0
\end{array}\right)
$$

c) Notice that $M^{\mu}{ }_{\nu}$ is a block matrix, thus we only need to invert the 2×2 block formed by the components with $(\mu, \nu)=(0,0),(1,0),(0,1)$, and $(1,1)$. Using standard methods to invert the block we obtain that

$$
\left(M^{-1}\right) \mu_{\nu}=\left(\begin{array}{cccc}
\gamma & \beta \gamma & 0 & 0 \\
\beta \gamma & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

d) The expression requested is:

$$
\left(M^{-1}\right)_{\nu}^{\mu}=\frac{\partial x^{\mu}}{\partial x^{\prime \nu}}
$$

e) The rank of $G^{\alpha}{ }_{\rho}$ is 2 . It is a mixed tensor.
f) We proceed as in part (b). We know that since $G^{\alpha}{ }_{\rho}$ is a mixed tensor

$$
\begin{equation*}
G_{\delta}^{\prime \lambda}=\frac{\partial x^{\prime \lambda}}{\partial x^{\alpha}} \frac{\partial x^{\rho}}{\partial x^{\prime \delta}} G_{\rho}^{\alpha}=M_{\alpha}^{\lambda}\left(M^{-1}\right)_{\delta}^{\rho} G_{\rho}^{\alpha} \tag{8}
\end{equation*}
$$

Notice that the only non-zero components of $G^{\alpha}{ }_{\rho}$ are $G^{1}{ }_{2}, G^{1}{ }_{3}, G^{2}{ }_{1}, G^{2}{ }_{3}, G^{3}{ }_{1}$, and $G^{3}{ }_{2}$. Then the only terms that are non-zero in Eq.(1) are:

$$
\begin{align*}
& G^{\prime \lambda}{ }_{\delta}=M^{\lambda}{ }_{1}\left(M^{-1}\right)^{2}{ }_{\delta} G^{1}{ }_{2} . \tag{9}\\
& G^{\prime \lambda}{ }_{\delta}=M^{\lambda}{ }_{1}\left(M^{-1}\right)^{3}{ }_{\delta} G^{1}{ }_{3} . \tag{10}\\
& G^{\prime \lambda}{ }_{\delta}=M^{\lambda}{ }_{2}\left(M^{-1}\right)^{1}{ }_{\delta} G^{2}{ }_{1} . \tag{11}\\
& G^{\prime \lambda}{ }_{\delta}=M^{\lambda}{ }_{2}\left(M^{-1}\right)^{3}{ }_{\delta} G^{2}{ }_{3} . \tag{12}\\
& G^{\prime \lambda}{ }_{\delta}=M^{\lambda}{ }_{3}\left(M^{-1}\right)^{1}{ }_{\delta} G^{3}{ }_{1} . \tag{13}\\
& G^{\prime \lambda}{ }_{\delta}=M^{\lambda}{ }_{3}\left(M^{-1}\right)^{2}{ }_{\delta} G^{3}{ }_{2} . \tag{14}
\end{align*}
$$

The non-zero components of $M^{\mu}{ }_{\nu}$ are $M^{0}{ }_{0}, M^{0}{ }_{1}, M^{1}{ }_{0}, M^{1}{ }_{1}, M^{2}{ }_{2}$, and $M^{3}{ }_{3}$ and the non-zero components of $\left(M^{-1}\right)^{\mu}{ }_{\nu}$ are $\left(M^{-1}\right)^{0}{ }_{0},\left(M^{-1}\right)^{0}{ }_{1},\left(M^{-1}\right)^{1}{ }_{0},\left(M^{-1}\right)^{1}{ }_{1},\left(M^{-1}\right)^{2}{ }_{2}$, and $\left(M^{-1}\right)^{3}{ }_{3}$. Then index λ can take two possible values in Eqs.(9) and (10) and only one value in Eqs.(11), (12), (13), and (14) while index δ can take two possible values in Eqs.(11) and (13) and only one value in Eqs.(9), (10), (12), and (14). Then the non-zero values of $G^{\prime \lambda}{ }_{\delta}$ are:

$$
\begin{gathered}
G^{\prime 0}{ }_{2}=M^{0}{ }_{1}\left(M^{-1}\right)^{2}{ }_{2} G^{1}{ }_{2}=-\beta \gamma G^{1}{ }_{2}=\beta \gamma H_{z} . \\
G^{\prime 1}{ }_{2}=M^{1}{ }_{1}\left(M^{-1}\right)^{2}{ }_{2} G^{1}{ }_{2}=\gamma G^{1}{ }_{2}=-\gamma H_{z} . \\
G^{\prime 0}{ }_{3}=M^{0}{ }_{1}\left(M^{-1}\right)^{3}{ }_{3} G^{1}{ }_{3}=-\beta \gamma G^{1}{ }_{3}=-\beta \gamma H_{y} . \\
G^{11}{ }_{3}=M^{1}{ }_{1}\left(M^{-1}\right)^{3}{ }_{3} G^{1}{ }_{3}=\gamma G^{1}{ }_{3}=\gamma H_{y} . \\
G^{\prime 2}{ }_{0}=M^{2}{ }_{2}\left(M^{-1}\right)^{1}{ }_{0} G^{2}{ }_{1}=\beta \gamma G^{2}{ }_{1}=\beta \gamma H_{z} . \\
G^{\prime 2}{ }_{1}=M^{2}{ }_{2}\left(M^{-1}\right)^{1}{ }_{1} G^{2}{ }_{1}=\beta \gamma G^{2}{ }_{1}=\gamma H_{z} . \\
G^{2}{ }_{3}=M^{2}{ }_{2}\left(M^{-1}\right)^{3}{ }_{3} G^{2}{ }_{3}=\beta \gamma G^{2}{ }_{3}=-\beta \gamma H_{z} . \\
G^{\prime 3}{ }_{0}=M^{3}{ }_{3}\left(M^{-1}\right)^{1}{ }_{0} G^{3}{ }_{1}=\beta \gamma G^{3}{ }_{1}=-\beta \gamma H_{z} . \\
G^{\prime 3}{ }_{1}=M^{3}{ }_{3}\left(M^{-1}\right)^{1}{ }_{1} G^{3}{ }_{1}=\beta \gamma G^{3}{ }_{1}=-\beta \gamma H_{z} . \\
G^{\prime 3}{ }_{2}=M^{3}{ }_{3}\left(M^{-1}\right)^{2}{ }_{2} G^{3}{ }_{2}=\beta \gamma G^{3}{ }_{2}=-\beta \gamma H_{z} .
\end{gathered}
$$

Then

$$
G^{\prime \alpha}{ }_{\rho}=\left(\begin{array}{cccc}
0 & 0 & \beta \gamma H_{z} & -\beta \gamma H_{y} \\
0 & 0 & -\gamma H_{z} & \gamma H_{y} \\
\beta \gamma H_{z} & \gamma H_{z} & 0 & -H_{x} \\
-\beta \gamma H_{y} & -\gamma H_{y} & H_{x} & 0
\end{array}\right)
$$

