Midterm Exam

September 27, 2011

SHOW ALL WORK TO GET FULL CREDIT!

PART I:ONLY TWO OF THE FOUR PROBLEMS WILL BE GRADED. Take a look at the 4 problems. Each of them is worth 25 points. To make sure that you have enough time to do your work you will have to turn in only 2 of the 4 problems. If you turn more than 2 problems only the two on top will be graded and 5 points will be deducted from your grade.
PART II: Take the test home and bring ALL the problems solved on Tuesday October 4. Your grade for the test will be the sum of the two parts. A perfect score is worth 150 points.

Problem 1: Consider a cartesian frame of reference S with perpendicular axis x_{1} and x_{2} and a frame S ' with oblique axis x_{1}^{\prime} which is parallel to x_{1} and x_{2}^{\prime} which is parralel to the vector $\mathbf{r}=(1,2)$ in frame S .
a) Find the angle α between x_{1}^{\prime} and x_{2}^{\prime}.(5 points)
b) Find the metric tensor $g_{i j}$ in $S^{\prime} .(5$ points)
c) Find $g^{i j}$ in S'.(5 points)
d) Consider the vector $r^{\prime i}=(1,1)$ in system S^{\prime}. Express its magnitude in terms of a tensor contraction in frame S^{\prime} and provide its value $\left|\mathbf{r}^{\prime}\right|$.(5 points)
e) Construct the tensor $T^{\prime i j}=r^{\prime i} r^{\prime j}$ and provide $T^{\prime i}{ }_{j}$ and $T_{i j}^{\prime}$. (5 points)

Problem 2:

a) Write and prove in tensor notation (justifying all your steps) the identity given by

$$
(\mathbf{A} \times \mathbf{B}) \times(\mathbf{C} \times \mathbf{D})=[\mathbf{A} .(\mathbf{B} \times \mathbf{D})] \mathbf{C}-[\mathbf{A} .(\mathbf{B} \times \mathbf{C})] \mathbf{D}
$$

(10 points)
b) Knowing that $\mathbf{A}, \mathbf{B}, \mathbf{C}$, and \mathbf{D} are vectors is $(\mathbf{A} \times \mathbf{B}) \times(\mathbf{C} \times \mathbf{D})$ a tensor? Provide its rank and explain.(5 points)
c) Is $(\mathbf{A} \times \mathbf{B}) \times(\mathbf{C} \times \mathbf{D})$ a tensor or a pseudotensor? Why? (5 points)
d) What is the value of $(\mathbf{A} \times \mathbf{B}) \times(\mathbf{C} \times \mathbf{D})$ if $\mathbf{A}, \mathbf{B}, \mathbf{C}$, and \mathbf{D} are all coplanar (in the same plane)? Explain. (5 points)

Problem 3:

a) Find the electrical potential $\Phi(x, y)$ inside the region defined by $0 \leq x \leq \infty$ and $0 \leq y \leq a$ if the potential at the region boundaries is given by $\Phi(x, 0)=\Phi(x, a)=0, \lim _{x \rightarrow \infty} \Phi(x, y)=0$, and $\Phi(0, y)=V$, where V is a constant. (10 points)
b) Now a charge q is placed inside the volume at point $\left(x_{0}, y_{0}\right)=(a, a / 2)$. Find the electrical potential $\Phi(x, y)$ inside the region defined by $0 \leq x \leq \infty$ and $0 \leq y \leq a$ if the potential at the region boundaries is given by $\Phi(x, 0)=\Phi(x, a)=0, \lim _{x \rightarrow \infty} \Phi(x, y)=0$, and $\Phi(0, y)=V$, where V is a constant. Hint: Use the superposition principle.(15 points)

Problem 4:

Consider the tensor $\mathrm{G}^{\alpha \rho}$, where α and ρ take the values $0,1,2$, and 3 with $x_{0}=c t\left(c\right.$ is a constant), $x_{1}=x, x_{2}=y$, and $x_{3}=z$ in frame of reference S . In this frame

$$
\mathrm{G}^{\alpha \rho}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \tag{1}\\
0 & 0 & -H_{z} & H_{y} \\
0 & H_{z} & 0 & -H_{x} \\
0 & -H_{y} & H_{x} & 0
\end{array}\right)
$$

The metric tensor in frame S is

$$
\mathrm{g}_{\alpha \rho}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{2}\\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

a) Wrire an expression for $G_{\mu, \nu}$. (5 points)
b) Consider the contraction $G_{\mu}{ }^{\mu}$. What is the rank of the tensor $G_{i}{ }^{i}$? Provide its value in terms of H_{i}. (5 points)
c) What is the rank of $G_{\mu, \nu} G^{\sigma \rho}$? Provide the value of the component with $\mu=1, \nu=3, \sigma=1$, and $\rho=2$. (5 points)
d) What is the rank of $G_{\mu, \nu} G^{\nu \rho}$? Provide the value of the component with $\mu=1$ and $\rho=2$. (5 points)
e) Calculate the dual tensor of $G^{\mu, \nu}$. (5 points)

